Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-26802941

RESUMO

Non-melanoma skin cancer (NMSC) is the most prevalent cancer in the United States. NMSC overexpresses cyclooxygenase-2 (COX-2). COX-2 synthesizes prostaglandins such as PGE2 which promote proliferation and tumorigenesis by engaging G-protein-coupled prostaglandin E receptors (EP). Apigenin is a bioflavonoid that blocks mouse skin tumorigenesis induced by the chemical carcinogens, 7,12-dimethylbenz[a]anthracene (DMBA) and 12-O-tetradecanoylphorbol-13-acetate (TPA). However, the effect of apigenin on the COX-2 pathway has not been examined in the DMBA/TPA skin tumor model. In the present study, apigenin decreased tumor multiplicity and incidence in DMBA/TPA-treated SKH-1 mice. Analysis of the non-tumor epidermis revealed that apigenin reduced COX-2, PGE2, EP1, and EP2 synthesis and also increased terminal differentiation. In contrast, apigenin did not inhibit the COX-2 pathway or promote terminal differentiation in the tumors. Since fewer tumors developed in apigenin-treated animals which contained reduced epidermal COX-2 levels, our data suggest that apigenin may avert skin tumor development by blocking COX-2.


Assuntos
Apigenina/uso terapêutico , Ciclo-Oxigenase 2/metabolismo , Dinoprostona/metabolismo , Epiderme/efeitos dos fármacos , Epiderme/metabolismo , Receptores de Prostaglandina E Subtipo EP1/metabolismo , Animais , Diferenciação Celular/efeitos dos fármacos , Feminino , Camundongos , Neoplasias Cutâneas/tratamento farmacológico
2.
Mol Carcinog ; 51(2): 139-49, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21432910

RESUMO

The endocannabinoid arachidonoyl ethanolamide (AEA) is a potent inducer of tumor cell apoptosis however its mechanism of cytotoxicity is unclear. A previous report from our laboratory showed that AEA induced cell death in a cyclooxygenase-2 (COX-2)-dependent manner and in this report our data indicate that AEA-induced apoptosis is mediated by COX-2 metabolic products of the J-series. In experiments conducted with JWF2 keratinocytes which over-express COX-2, AEA caused a concentration-regulated increase in J-series prostaglandin production and apoptosis. Similarly, cell treatment with exogenously added J-series prostaglandins (15-deoxy, Δ(12,14) PGJ(2) and PGJ(2)) induced apoptosis. AEA-induced apoptosis was inhibited by the antioxidant, N-acetyl cysteine, indicating that reactive oxygen species generation was required for apoptosis. Using antagonists of cannabinoid receptor 1, cannabinoid receptor 2, or transient receptor potential cation channel, subfamily V, member 1, it was observed that cannabinoid receptor inhibition did not block AEA-mediated cell death. In contrast, an inhibitor of fatty acid amide hydrolase (FAAH) potentiated AEA-induced J-series PG synthesis and apoptosis. These results suggest that the metabolism of AEA to J-series PGs regulates the induction of apoptosis in cells with elevated COX-2 levels. Our data further indicate that the proapoptotic activity of AEA can be enhanced by combining it with an inhibitor of FAAH. As such, AEA may be an effective agent to eliminate tumor cells that over-express COX-2.


Assuntos
Amidoidrolases/antagonistas & inibidores , Apoptose/efeitos dos fármacos , Ácidos Araquidônicos/farmacologia , Alcamidas Poli-Insaturadas/farmacologia , Prostaglandinas/fisiologia , Animais , Western Blotting , Linhagem Celular Tumoral , Endocanabinoides , Marcação In Situ das Extremidades Cortadas , Camundongos , Receptores de Canabinoides/metabolismo
3.
Mol Carcinog ; 48(8): 724-32, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19148897

RESUMO

Nonmelanoma skin cancer is the most prevalent cancer in the United States with approximately 1.25 million new cases diagnosed each year. Cyclooxygenase-2 (COX-2) expression is commonly elevated in these and other epithelial tumors. Cyclooxygenases metabolize arachidonic acid to prostaglandins, which promote growth and survival of tumor cells. COX-2 also metabolizes endocannabinoids forming prostaglandin-ethanolamides (PG-EA); however, the role of these lipid molecules in tumor cell survival is unclear. The goal of this research is to determine if the metabolic products of COX-2 contribute to endocannabinoid-induced cell death. Anandamide [also known as arachidonyl ethanolamide (AEA)] induced cell death in the COX-2 overexpressing squamous carcinoma cell line JWF2. In contrast, AEA did not initiate cell death in HaCaT keratinocytes, which express low basal levels of COX-2. Resistance to AEA-mediated cell death in HaCaT cells was reversed by overexpressing COX-2 in these cells. Next, ELISA assays were carried out to identify prostaglandins involved in AEA-mediated cell death. D-type prostaglandins were predominantly formed in AEA-exposed JWF2 cells although significant increases in E- and F-type prostaglandins were also seen. Cells were then treated with various prostaglandins or PG-EA to determine the contribution of each to AEA-induced cell death. PGD(2) and PGD(2)-EA were found to be cytotoxic to JWF2 keratinocytes and the PGD(2) dehydration products, PGJ(2) and 15-deoxy Delta(12,14) PGJ(2), were also potent inducers of cell death. These results suggest that AEA selectively induces cell death in tumorigenic keratinocytes due to COX-2 overexpression and the resulting metabolism of AEA to cytotoxic prostaglandins.


Assuntos
Ácidos Araquidônicos/metabolismo , Moduladores de Receptores de Canabinoides/farmacologia , Morte Celular/efeitos dos fármacos , Ciclo-Oxigenase 2/farmacologia , Endocanabinoides , Queratinócitos/metabolismo , Queratinócitos/patologia , Alcamidas Poli-Insaturadas/metabolismo , Animais , Ácidos Araquidônicos/farmacologia , Western Blotting , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Proliferação de Células , Queratinócitos/efeitos dos fármacos , Camundongos , Transdução de Sinais , Transfecção , Células Tumorais Cultivadas
4.
Cancer Res ; 68(8): 3057-65, 2008 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-18413777

RESUMO

Topical application of the bioflavonoid 4',5,7-trihydroxyflavone (apigenin) to mouse skin effectively reduces the incidence and size of skin tumors caused by UVB exposure. The ability to act as a chemopreventive compound indicates that apigenin treatment alters the molecular events initiated by UVB exposure; however, the effects of apigenin treatment on UVB-irradiated keratinocytes are not fully understood. In the present study, we have used three models of human keratinocytes to study the effect of apigenin treatment on UVB-induced apoptosis: HaCaT human keratinocyte cells, primary keratinocyte cultures isolated from human neonatal foreskin, and human organotypic keratinocyte cultures. Each keratinocyte model was exposed to a moderate dose of UVB (300-1,000 J/m(2)), then treated with apigenin (0-50 micromol/L), and harvested to assess apoptosis by Western blot analysis for poly(ADP)ribose polymerase cleavage, annexin-V staining by flow cytometry, and/or the presence of sunburn cells. Apigenin treatment enhanced UVB-induced apoptosis >2-fold in each of the models tested. When keratinocytes were exposed to UVB, apigenin treatment stimulated changes in Bax localization and increased the release of cytochrome c from the mitochondria compared with UVB exposure alone. Overexpression of the antiapoptotic protein Bcl-2 and expression of a dominant-negative form of Fas-associated death domain led to a reduction in the ability of apigenin to enhance UVB-induced apoptosis. These results suggest that enhancement of UVB-induced apoptosis by apigenin treatment involves both the intrinsic and extrinsic apoptotic pathways. The ability of apigenin to enhance UVB-induced apoptosis may explain, in part, the photochemopreventive effects of apigenin.


Assuntos
Apigenina/farmacologia , Apoptose/efeitos da radiação , Queratinócitos/fisiologia , Raios Ultravioleta , Anticarcinógenos/farmacologia , Técnicas de Cultura de Células/métodos , Células Cultivadas , Flavonas/farmacologia , Humanos , Queratinócitos/citologia , Queratinócitos/efeitos dos fármacos , Queratinócitos/efeitos da radiação
5.
Mol Cell Biol ; 27(1): 283-96, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17074806

RESUMO

Cyclooxygenase 2 (COX-2) is a key enzyme in the conversion of arachidonic acid to prostaglandins, and COX-2 overexpression plays an important role in carcinogenesis. Exposure to UVB strongly increased COX-2 protein expression in mouse 308 keratinocytes, and this induction was inhibited by apigenin, a nonmutagenic bioflavonoid that has been shown to prevent mouse skin carcinogenesis induced by both chemical carcinogens and UV exposure. Our previous study suggested that one pathway by which apigenin inhibits UV-induced and basal COX-2 expression is through modulation of USF transcriptional activity in the 5' upstream region of the COX-2 gene. Here, we found that apigenin treatment also increased COX-2 mRNA stability, and the inhibitory effect of apigenin on UVB-induced luciferase reporter gene activity was dependent on the AU-rich element of the COX-2 3'-untranslated region. Furthermore, we identified two RNA-binding proteins, HuR and the T-cell-restricted intracellular antigen 1-related protein (TIAR), which were associated with endogenous COX-2 mRNA in 308 keratinocytes, and apigenin treatment increased their localization to cell cytoplasm. More importantly, reduction of HuR levels by small interfering RNA inhibited apigenin-mediated stabilization of COX-2 mRNA. Cells expressing reduced TIAR showed marked resistance to apigenin's ability to inhibit UVB-induced COX-2 expression. Taken together, these results indicate that in addition to transcriptional regulation, another mechanism by which apigenin prevents COX-2 expression is through mediating TIAR suppression of translation.


Assuntos
Apigenina/farmacologia , Ciclo-Oxigenase 2/biossíntese , Regulação da Expressão Gênica , Biossíntese de Proteínas , Raios Ultravioleta , Animais , Citoplasma/metabolismo , Dactinomicina/farmacologia , Dinoprostona/metabolismo , Queratinócitos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Frações Subcelulares
6.
Mol Carcinog ; 46(4): 303-14, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17186551

RESUMO

Apigenin is a bioflavonoid with chemopreventive activity against UV- or chemically-induced mouse skin tumors. To further explore the mechanism of apigenin's chemopreventive activity, we determined whether apigenin inhibited UVB-mediated induction of cyclooxygenase-2 (COX-2) expression in mouse and human keratinocytes. Apigenin suppressed the UVB-induced increase in COX-2 protein and mRNA in mouse and human keratinocyte cell lines. UVB radiation of keratinocytes transfected with a mouse COX-2 promoter/luciferase reporter plasmid resulted in a threefold increase in transcription from the promoter, and apigenin inhibited the UV-induced promoter activity at doses of 5-50 microM. Transient transfections with COX-2 promoter deletion constructs and COX-2 promoter constructs containing mutations in specific enhancer elements indicated that the effects of UVB required intact Ebox and ATF/CRE response elements. Electrophoretic mobility shift assays with supershifting antibodies were used to identify USF-1, USF-2, and CREB as proteins binding to the ATF/CRE-Ebox responsive element of the COX-2 promoter. Keratinocytes co-transfected with the COX-2 luciferase reporter and a USF-2 expression vector, alone or in combination with a USF-1 expression vector, exhibited enhanced promoter activity in both UVB-irradiated and nonirradiated cultures. However, COX-2 promoter activity was inhibited in keratinocytes co-transfected with USF-1 alone. Finally, we present data showing that the suppressive effect of apigenin on COX-2 expression could be reversed by co-expression of USF-1 and USF-2. These results suggest that one pathway by which apigenin inhibits COX-2 expression is through modulation of USF transcriptional activity.


Assuntos
Apigenina/farmacologia , Ciclo-Oxigenase 2/biossíntese , Regulação Enzimológica da Expressão Gênica , Queratinócitos/enzimologia , Fatores Estimuladores Upstream/metabolismo , Animais , Linhagem Celular , Indução Enzimática/efeitos dos fármacos , Indução Enzimática/efeitos da radiação , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/efeitos da radiação , Queratinócitos/efeitos da radiação , Camundongos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/efeitos da radiação , Raios Ultravioleta
7.
Mol Carcinog ; 44(2): 83-91, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16044407

RESUMO

Apigenin is a nonmutagenic bioflavonoid that has been shown to be an inhibitor of mouse skin carcinogenesis induced by the two-stage regimen of initiation and promotion with dimethylbenzanthracene (DMBA) and 12-O-tetradecanoylphorbol-13-acetate (TPA). These DMBA/TPA-induced squamous cell carcinomas overexpress cyclooxygenase-2 (COX-2). Cyclooxygenases are key enzymes required for prostaglandin (PG) synthesis, converting the arachidonic acid (AA) released by phospholipase A2 into prostaglandins. A large body of evidence indicates that the inducible form of cyclooxygenase, COX-2, is involved in tumor promotion and carcinogenesis in a wide variety of tissue types, including colon, breast, lung, and skin. In the present study, we have determined that apigenin inhibited the TPA-induced increase in COX-2 protein and mRNA in the human keratinocyte cell line; HaCaT. The induction of COX-2 elicited by TPA correlated with increased activation of Akt kinase and cell treatment with the PI3 kinase inhibitor, LY294002, blocked TPA induction of COX-2. In cells treated with TPA and apigenin, the inhibition of COX-2 expression correlated with inhibition of Akt kinase activation. Apigenin-mediated inhibition of TPA-induced COX-2 expression was reversed by transient transfection with constitutively active Akt (CA-Akt). Chemical inhibitors of MEK (PD98059), p38 (SB202190), but not JNK (SP600125) blocked TPA induction of COX-2 although apigenin did not inhibit TPA-mediated COX-2 expression through these pathways. The TPA-induced release of AA from HaCaT cells was also inhibited by cell treatment with apigenin. These data show that apigenin inhibits TPA-mediated COX-2 expression by blocking signal transduction of Akt and that apigenin also blocks AA release, which may contribute to its chemopreventive activity.


Assuntos
Apigenina/farmacologia , Queratinócitos/efeitos dos fármacos , Prostaglandina-Endoperóxido Sintases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Acetato de Tetradecanoilforbol/farmacologia , Linhagem Celular , Ciclo-Oxigenase 2 , Dinoprostona/metabolismo , Regulação para Baixo , Ativação Enzimática , Humanos , Queratinócitos/metabolismo , Proteínas de Membrana , Proteínas Proto-Oncogênicas c-akt , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transfecção
8.
Antimicrob Agents Chemother ; 46(7): 2145-54, 2002 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12069967

RESUMO

The Pneumocystis carinii topoisomerase I-encoding gene has been cloned and sequenced, and the expressed enzyme interactions with several classes of topoisomerase I poisons have been characterized. The P. carinii topoisomerase I protein contains 763 amino acids and has a molecular mass of ca. 90 kDa. The expressed enzyme relaxes supercoiled DNA to completion and has no Mg2+ requirement. Cleavage assays reveal that both the human and P. carinii enzymes form covalent complexes in the presence of camptothecin, Hoechst 33342, and the terbenzimidazole QS-II-48. As with the human enzyme, no cleavage is stimulated in the presence of 4',6'-diamidino-2-phenylindole (DAPI) or berenil. A yeast cytotoxicity assay shows that P. carinii topoisomerase I is also a cytotoxic target for the mixed intercalative plus minor-groove binding drug nogalamycin. In contrast to the human enzyme, P. carinii topoisomerase I is resistant to both nitidine and potent protoberberine human topoisomerase I poisons. The differences in the sensitivities of P. carinii and human topoisomerase I to various topoisomerase I poisons support the use of the fungal enzyme as a molecular target for drug development. Additionally, we have characterized the interaction of pentamidine with P. carinii topoisomerase I. We show, by catalytic inhibition, cleavage, and yeast cytotoxicity assays, that pentamidine does not target topoisomerase I.


Assuntos
Antifúngicos/farmacologia , Camptotecina/farmacologia , Inibidores Enzimáticos/farmacologia , Proteínas Fúngicas/antagonistas & inibidores , Pentamidina/farmacologia , Pneumocystis/enzimologia , Inibidores da Topoisomerase I , Sequência de Aminoácidos , Sequência de Bases , Clonagem Molecular , DNA Topoisomerases Tipo I/genética , DNA Topoisomerases Tipo I/metabolismo , Humanos , Dados de Sequência Molecular , Proteínas Recombinantes/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...