Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Agric Food Chem ; 55(18): 7527-33, 2007 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-17676866

RESUMO

Sorption of chlorpyrifos (CPF) from 2.85 microM (1 mg/L) aqueous solutions in 0.01 M NaCl to montmorillonite, kaolinite, and gibbsite was investigated at 25 degrees C. Uptake of CPF by kaolinite and gibbsite was generally <10%, with pH having at most a small effect. Sorption to montmorillonite was significantly greater, with approximately 50% of the initial CPF being removed from solution below pH 5. Above pH 5 the sorption decreased to about 30%. About 70% of CPF was sorbed to kaolinite and gibbsite after 30 min, whereas on montmorillonite only 50% sorbed in an initial rapid uptake (approximately 30 min) followed by slower sorption, with a maximum achieved by 24 h. Although CPF desorbed completely from kaolinite in methanol, only about two-thirds was desorbed from montmorillonite. CPF has only a weak affinity for the surfaces of kaolinite and gibbsite. In the case of montmorillonite, sorption is significantly stronger and may involve a combination of sorption to external surfaces and diffusion into microporous regions. At pH >6 increased negative surface charge results in a lower affinity of CPF for the external surface. In the presence of 50 mg/L humic acid (HA) the amount of CPF sorbed on gibbsite and kaolinite was 3-4 times greater than that in the binary systems. The HA forms an organic coating on the mineral surface, providing a more hydrophobic environment, leading to enhanced CPF uptake. The HA coating on montmorillonite may reduce access of CPF to microporous regions, with CPF tending to accumulate within the HA coating.


Assuntos
Clorpirifos/química , Substâncias Húmicas , Minerais/química , Adsorção , Fenômenos Químicos , Físico-Química , Concentração de Íons de Hidrogênio , Cinética , Soluções , Água
2.
Langmuir ; 23(6): 3205-13, 2007 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-17266338

RESUMO

Sorption of phosphate onto gibbsite (gamma-Al(OH)3) and kaolinite has been studied by both macroscopic and 31P solid-state NMR measurements. Together these measurements indicate that phosphate is sorbed by a combination of surface complexation and surface precipitation with the relative amounts of these phases depending on pH and phosphate concentration. At low pH and high phosphate concentrations sorption is dominated by the presence of both amorphous and crystalline precipitate phases. The similarity between the single-pulse and CP/MAS NMR spectra suggests that the precipitate phases form a thin layer on the surface of the particles in close contact with protons from surface hydroxyl groups or coordinated water molecules. While the crystalline phase is only evident on samples below pH 7, amorphous AlPO4 was found at all pH and phosphate concentrations studied. As pH was increased the fraction of phosphate sorbed as an inner-sphere complex increased, becoming the dominant surface species by pH 8. Comparison of sorption and NMR results suggests that the inner-sphere complexes form by monodentate coordination to singly coordinated Al-OH sites on the edges of the gibbsite and kaolinite crystals. Outer-sphere phosphate complexes, which are readily desorbed, are also present at high pH.


Assuntos
Hidróxido de Alumínio/química , Caulim/química , Espectroscopia de Ressonância Magnética/métodos , Fosfatos/química , Adsorção , Biofísica/métodos , Físico-Química/métodos , Cristalização , Concentração de Íons de Hidrogênio , Prótons , Solo , Solubilidade , Fatores de Tempo , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...