Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 361: 142532, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38844109

RESUMO

Ladle slag, a by-product of steelmaking, presents a valuable strategy for waste reduction and valorization in wastewater treatment. This work demonstrates the successful simultaneous removal of Al(III), B(III), Ba(II), Cr(III), Mg(II), Sr(II), Pb(II), and Zn(II), from electroplating wastewater by ladle slag. First, Cr(III) and Pb(II) removals were evaluated in single synthetic systems by analyzing the influence of pH, temperature, and ladle slag dosage. Competitive removal was observed in binary batch experiments of Cr(III) - Pb(II), achieving 88% and 96% removal, respectively, with fast kinetics following a pseudo-second-order model. The findings of XRD, SEM, EDX, and FTIR of the slag after removal helped to elucidate the synergic removal mechanism involving ladle slag dissolution, precipitation, ion exchange, and adsorption in a tight relationship with the solution pH. Lastly, ladle slag was tested in real electroplating wastewater with the aforementioned ions at concentrations ranging from <1 to 1700 mg/L. The removal was performed in two steps, the first attained the following efficiencies: 73% for Al(III), 88% for B(III), 98% for Ba(II), 80% for Cr(III), 82% for Mg(II), 99% for Pb(II), 88% for Sr(II), and 88% for Zn(II). Visual MINTEQ simulation was utilized to identify the different species of ions present during the removal process. Furthermore, the leaching tests indicated a minimal environmental risk of secondary pollution in its application. The results promote an effective and sustainable approach to wastewater treatment within the circular economy.


Assuntos
Galvanoplastia , Metais Pesados , Eliminação de Resíduos Líquidos , Águas Residuárias , Poluentes Químicos da Água , Águas Residuárias/química , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química , Metais Pesados/isolamento & purificação , Metais Pesados/análise , Metais Pesados/química , Eliminação de Resíduos Líquidos/métodos , Adsorção , Concentração de Íons de Hidrogênio , Cinética , Resíduos Industriais/análise , Aço/química
2.
Water Res ; 227: 119322, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36371916

RESUMO

Conventional polyamide (PA) nanofiltration (NF) membranes can readily adsorb aromatic compounds, such as endocrine disrupting compounds (EDCs). Therefore, these substances can easily be transported across the membrane by solution-diffusion, resulting in a poor EDC-rejection. In this work, a novel thin film nanocomposite (TFN) membrane was fabricated by incorporating covalent organic frameworks (COFs) into the PA layer via an interfacial polymerization reaction. COFs with functional groups can provide abundant active binding sites for highly efficient EDC-capture. The rejection of the optimal TFN-COF membrane for bisphenol A, bisphenol AF, and sodium 2-biphenylate was 98.3%, 99.1%, and 99.3%, respectively, which was much higher than of the rejection of the pristine NF-membrane (82.4%, 95.5%, and 96.4%, respectively). Additionally, the TFN-COF membrane could be regenerated fast and efficiently by washing with ethanol for some minutes. COF nanofillers with porous structures provide additional water channels, making it possible to overcome the permeability-selectivity trade-off of NF membranes. The water permeance (17.1 L m-2 h-1 bar-1) of the optimal membrane was about two times higher than for the pristine NF-membrane (8.7 L m-2 h-1 bar-1). In addition, the TFN-COF membrane with a COF-loading of 0.05% w/v had an excellent Na2SO4 rejection (95.2%) due to size exclusion and strong Donnan effect. This work combines traditional NF membranes and adsorption materials to achieve efficient capture and rapid release of EDCs without sacrificing salt rejections, which opens the door to develop fit-for-purpose adsorptive NF membranes.


Assuntos
Estruturas Metalorgânicas , Nanocompostos , Purificação da Água , Nylons , Nanocompostos/química , Membranas Artificiais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...