Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 5330, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38909062

RESUMO

Porcine deltacoronavirus (PDCoV) is an emerging enteric pathogen that has recently been detected in humans. Despite this zoonotic concern, the antigenic structure of PDCoV remains unknown. The virus relies on its spike (S) protein for cell entry, making it a prime target for neutralizing antibodies. Here, we generate and characterize a set of neutralizing antibodies targeting the S protein, shedding light on PDCoV S interdomain crosstalk and its vulnerable sites. Among the four identified antibodies, one targets the S1A domain, causing local and long-range conformational changes, resulting in partial exposure of the S1B domain. The other antibodies bind the S1B domain, disrupting binding to aminopeptidase N (APN), the entry receptor for PDCoV. Notably, the epitopes of these S1B-targeting antibodies are concealed in the prefusion S trimer conformation, highlighting the necessity for conformational changes for effective antibody binding. The binding footprint of one S1B binder entirely overlaps with APN-interacting residues and thus targets a highly conserved epitope. These findings provide structural insights into the humoral immune response against the PDCoV S protein, potentially guiding vaccine and therapeutic development for this zoonotic pathogen.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Deltacoronavirus , Epitopos , Glicoproteína da Espícula de Coronavírus , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Glicoproteína da Espícula de Coronavírus/química , Animais , Anticorpos Neutralizantes/imunologia , Suínos , Anticorpos Antivirais/imunologia , Epitopos/imunologia , Humanos , Deltacoronavirus/imunologia , Deltacoronavirus/metabolismo , Antígenos CD13/metabolismo , Antígenos CD13/imunologia , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia , Domínios Proteicos , Ligação Proteica , Doenças dos Suínos/virologia , Doenças dos Suínos/imunologia , Células HEK293
2.
Toxicon X ; 21: 100185, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38425752

RESUMO

Snakebite envenoming is a priority Neglected Tropical Disease that causes an estimated 81,000-135,000 fatalities each year. The development of a new generation of safer, affordable, and accessible antivenom therapies is urgently needed. With this goal in mind, rigorous characterisation of the specific toxins in snake venom is key to generating novel therapies for snakebite. Monoclonal antibodies directed against venom toxins are emerging as potentially strong candidates in the development of new snakebite diagnostics and treatment. Venoms comprise many different toxins of which several are responsible for their pathological effects. Due to the large variability of venoms within and between species, formulations of combinations of human antibodies are proposed as the next generation antivenoms. Here a high-throughput screening method employing antibody-based ligand fishing of venom toxins in 384 filter-well plate format has been developed to determine the antibody target/s The approach uses Protein G beads for antibody capture followed by exposure to a full venom or purified toxins to bind their respective ligand toxin(s). This is followed by a washing/centrifugation step to remove non-binding toxins and an in-well tryptic digest. Finally, peptides from each well are analysed by nanoLC-MS/MS and subsequent Mascot database searching to identify the bound toxin/s for each antibody under investigation. The approach was successfully validated to rapidly screen antibodies sourced from hybridomas, derived from venom-immunised mice expressing either regular human antibodies or heavy-chain-only human antibodies (HCAbs).

3.
Front Immunol ; 14: 1111385, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36895554

RESUMO

Emerging SARS-CoV-2 variants have accrued mutations within the spike protein rendering most therapeutic monoclonal antibodies against COVID-19 ineffective. Hence there is an unmet need for broad-spectrum mAb treatments for COVID-19 that are more resistant to antigenically drifted SARS-CoV-2 variants. Here we describe the design of a biparatopic heavy-chain-only antibody consisting of six antigen binding sites recognizing two distinct epitopes in the spike protein NTD and RBD. The hexavalent antibody showed potent neutralizing activity against SARS-CoV-2 and variants of concern, including the Omicron sub-lineages BA.1, BA.2, BA.4 and BA.5, whereas the parental components had lost Omicron neutralization potency. We demonstrate that the tethered design mitigates the substantial decrease in spike trimer affinity seen for escape mutations for the hexamer components. The hexavalent antibody protected against SARS-CoV-2 infection in a hamster model. This work provides a framework for designing therapeutic antibodies to overcome antibody neutralization escape of emerging SARS-CoV-2 variants.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Cricetinae , Humanos , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Cadeias Pesadas de Imunoglobulinas/genética , Anticorpos Monoclonais
4.
Proc Natl Acad Sci U S A ; 119(32): e2200879119, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35925889

RESUMO

The value of anti-CTLA-4 antibodies in cancer therapy is well established. However, the broad application of currently available anti-CTLA-4 therapeutic antibodies is hampered by their narrow therapeutic index. It is therefore challenging and attractive to develop the next generation of anti-CTLA-4 therapeutics with improved safety and efficacy. To this end, we generated fully human heavy chain-only antibodies (HCAbs) against CTLA-4. The hIgG1 Fc domain of the top candidate, HCAb 4003-1, was further engineered to enhance its regulatory T (Treg) cell depletion effect and to decrease its half-life, resulting in HCAb 4003-2. We tested these HCAbs in in vitro and in vivo experiments in comparison with ipilimumab and other anti-CTLA4 antibodies. The results show that human HCAb 4003-2 binds human CTLA-4 with high affinity and potently blocks the binding of B7-1 (CD80) and B7-2 (CD86) to CTLA-4. The results also show efficient tumor penetration. HCAb 4003-2 exhibits enhanced antibody-dependent cellular cytotoxicity function, lower serum exposure, and more potent anti-tumor activity than ipilimumab in murine tumor models, which is partly driven by a substantial depletion of intratumoral Tregs. Importantly, the enhanced efficacy combined with the shorter serum half-life and less systemic drug exposure in vivo potentially provides an improved therapeutic window in cynomolgus monkeys and preliminary clinical applications. With its augmented efficacy via Treg depletion and improved safety profile, HCAb 4003-2 is a promising candidate for the development of next generation anti-CTLA-4 therapy.


Assuntos
Cadeias Pesadas de Imunoglobulinas , Imunoterapia , Neoplasias , Linfócitos T Reguladores , Animais , Citotoxicidade Celular Dependente de Anticorpos , Antígeno CTLA-4/imunologia , Humanos , Cadeias Pesadas de Imunoglobulinas/farmacologia , Ipilimumab/farmacologia , Camundongos , Neoplasias/patologia , Neoplasias/terapia
5.
Nat Commun ; 13(1): 2921, 2022 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-35614127

RESUMO

Human coronavirus OC43 is a globally circulating common cold virus sustained by recurrent reinfections. How it persists in the population and defies existing herd immunity is unknown. Here we focus on viral glycoprotein S, the target for neutralizing antibodies, and provide an in-depth analysis of its antigenic structure. Neutralizing antibodies are directed to the sialoglycan-receptor binding site in S1A domain, but, remarkably, also to S1B. The latter block infection yet do not prevent sialoglycan binding. While two distinct neutralizing S1B epitopes are readily accessible in the prefusion S trimer, other sites are occluded such that their accessibility must be subject to conformational changes in S during cell-entry. While non-neutralizing antibodies were broadly reactive against a collection of natural OC43 variants, neutralizing antibodies generally displayed restricted binding breadth. Our data provide a structure-based understanding of protective immunity and adaptive evolution for this endemic coronavirus which emerged in humans long before SARS-CoV-2.


Assuntos
COVID-19 , Coronavirus Humano OC43 , Anticorpos Monoclonais , Anticorpos Neutralizantes , Anticorpos Antivirais , Coronavirus Humano OC43/metabolismo , Epitopos , Humanos , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus
6.
Sci Immunol ; 7(73): eabp9312, 2022 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-35471062

RESUMO

The ongoing evolution of SARS-CoV-2 has resulted in the emergence of Omicron, which displays notable immune escape potential through mutations at key antigenic sites on the spike protein. Many of these mutations localize to the spike protein ACE2 receptor binding domain, annulling the neutralizing activity of therapeutic antibodies that were effective against other variants of concern (VOCs) earlier in the pandemic. Here, we identified a receptor-blocking human monoclonal antibody, 87G7, that retained potent in vitro neutralizing activity against SARS-CoV-2 variants including the Alpha, Beta, Gamma, Delta, and Omicron (BA.1/BA.2) VOCs. Using cryo-electron microscopy and site-directed mutagenesis experiments, we showed that 87G7 targets a patch of hydrophobic residues in the ACE2-binding site that are highly conserved in SARS-CoV-2 variants, explaining its broad neutralization capacity. 87G7 protected mice and hamsters prophylactically against challenge with all current SARS-CoV-2 VOCs and showed therapeutic activity against SARS-CoV-2 challenge in both animal models. Our findings demonstrate that 87G7 holds promise as a prophylactic or therapeutic agent for COVID-19 that is more resilient to SARS-CoV-2 antigenic diversity.


Assuntos
Enzima de Conversão de Angiotensina 2 , Anticorpos Neutralizantes , Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2/antagonistas & inibidores , Animais , Anticorpos Neutralizantes/farmacologia , Microscopia Crioeletrônica , Humanos , Glicoproteínas de Membrana , Camundongos , Testes de Neutralização , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Proteínas do Envelope Viral
7.
Methods Mol Biol ; 2446: 121-141, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35157271

RESUMO

The antibody repertoires of transgenic mice expressing human heavy chain only antibodies (HCAbs) can be retrieved from immune cells after antigen challenge. Compared with genetically modified rodents expressing conventional human antibodies (tetramers consisting of two heavy chains paired with two light chains), there is no chain pairing problem, since each antibody consists of a heavy chain dimer which is solely responsible for antigen binding. HCAbs can be obtained by classical hybridoma fusion, or the generation of phage libraries or eukaryotic cell libraries displaying or secreting HCAbs. Combined transcriptomic/serum proteomic approaches can also be used to determine the repertoire of antibodies, as well as single cell technologies such as the Beacon system that enable capture of immune cells of interest, analysis, and sequencing of antibodies in a short period of time. Here, we describe a protocol for obtaining monoclonal HCAbs from immunized Harbour transgenic mice through the generation and screening of HEK cell libraries of secreted antibodies. The method can be used routinely and is fast and affordable for everyone. Selected VH regions (single domains) are sequenced and individual HCAbs can be produced and purified from the same expression vector that is used for library generation (hIgG1 Fc). They can also be cloned into other expression plasmids and reformatted to equip them with a particular effector function, modify lifespan in serum, or optimize valency and avidity depending on the specific aim.


Assuntos
Anticorpos de Domínio Único , Animais , Humanos , Imunoglobulina G , Cadeias Pesadas de Imunoglobulinas/genética , Camundongos , Camundongos Transgênicos , Proteômica
8.
Cell Mol Life Sci ; 79(2): 82, 2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35048158

RESUMO

Senescence, the irreversible cell cycle arrest of damaged cells, is accompanied by a deleterious pro-inflammatory senescence-associated secretory phenotype (SASP). Senescence and the SASP are major factors in aging, cancer, and degenerative diseases, and interfere with the expansion of adult cells in vitro, yet little is known about how to counteract their induction and deleterious effects. Paracrine signals are increasingly recognized as important senescence triggers and understanding their regulation and mode of action may provide novel opportunities to reduce senescence-induced inflammation and improve cell-based therapies. Here, we show that the signalling protein WNT3A counteracts the induction of paracrine senescence in cultured human adult mesenchymal stem cells (MSCs). We find that entry into senescence in a small subpopulation of MSCs triggers a secretome that causes a feed-forward signalling cascade that with increasing speed induces healthy cells into senescence. WNT signals interrupt this cascade by repressing cytokines that mediate this induction of senescence. Inhibition of those mediators by interference with NF-κB or interleukin 6 signalling reduced paracrine senescence in absence of WNT3A and promoted the expansion of MSCs. Our work reveals how WNT signals can antagonize senescence and has relevance not only for expansion of adult cells but can also provide new insights into senescence-associated inflammatory and degenerative diseases.


Assuntos
Células-Tronco Mesenquimais/metabolismo , Fenótipo Secretor Associado à Senescência , Via de Sinalização Wnt , Proliferação de Células , Células Cultivadas , Humanos , Células-Tronco Mesenquimais/citologia , Pessoa de Meia-Idade , Proteína Wnt3A/metabolismo
9.
Nat Commun ; 12(1): 1715, 2021 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-33731724

RESUMO

The coronavirus spike glycoprotein, located on the virion surface, is the key mediator of cell entry and the focus for development of protective antibodies and vaccines. Structural studies show exposed sites on the spike trimer that might be targeted by antibodies with cross-species specificity. Here we isolated two human monoclonal antibodies from immunized humanized mice that display a remarkable cross-reactivity against distinct spike proteins of betacoronaviruses including SARS-CoV, SARS-CoV-2, MERS-CoV and the endemic human coronavirus HCoV-OC43. Both cross-reactive antibodies target the stem helix in the spike S2 fusion subunit which, in the prefusion conformation of trimeric spike, forms a surface exposed membrane-proximal helical bundle. Both antibodies block MERS-CoV infection in cells and provide protection to mice from lethal MERS-CoV challenge in prophylactic and/or therapeutic models. Our work highlights an immunogenic and vulnerable site on the betacoronavirus spike protein enabling elicitation of antibodies with unusual binding breadth.


Assuntos
Anticorpos Monoclonais Humanizados/imunologia , Betacoronavirus/imunologia , Epitopos/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Animais , Anticorpos Monoclonais Humanizados/uso terapêutico , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/uso terapêutico , Anticorpos Antivirais/imunologia , Betacoronavirus/classificação , Camelus , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/virologia , Reações Cruzadas , Epitopos/química , Epitopos/genética , Humanos , Camundongos , Conformação Proteica , Subunidades Proteicas , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética
10.
Nat Commun ; 11(1): 2251, 2020 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-32366817

RESUMO

The emergence of the novel human coronavirus SARS-CoV-2 in Wuhan, China has caused a worldwide epidemic of respiratory disease (COVID-19). Vaccines and targeted therapeutics for treatment of this disease are currently lacking. Here we report a human monoclonal antibody that neutralizes SARS-CoV-2 (and SARS-CoV) in cell culture. This cross-neutralizing antibody targets a communal epitope on these viruses and may offer potential for prevention and treatment of COVID-19.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Betacoronavirus/imunologia , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/prevenção & controle , Pandemias/prevenção & controle , Pneumonia Viral/imunologia , Pneumonia Viral/prevenção & controle , Enzima de Conversão de Angiotensina 2 , Animais , Anticorpos Monoclonais/farmacologia , Anticorpos Neutralizantes/farmacologia , Anticorpos Antivirais/farmacologia , Afinidade de Anticorpos/imunologia , Betacoronavirus/química , Betacoronavirus/efeitos dos fármacos , COVID-19 , Chlorocebus aethiops , Sequência Conservada , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/virologia , Reações Cruzadas/imunologia , Epitopos de Linfócito B/química , Epitopos de Linfócito B/imunologia , Humanos , Técnicas In Vitro , Concentração Inibidora 50 , Modelos Moleculares , Peptidil Dipeptidase A/química , Peptidil Dipeptidase A/metabolismo , Pneumonia Viral/tratamento farmacológico , Pneumonia Viral/virologia , Ligação Proteica/efeitos dos fármacos , Domínios Proteicos/imunologia , Receptores Virais/química , Receptores Virais/metabolismo , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/química , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/efeitos dos fármacos , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/imunologia , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/imunologia , Células Vero
11.
Nat Commun ; 11(1): 2511, 2020 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-32409714

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

12.
Emerg Microbes Infect ; 8(1): 516-530, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30938227

RESUMO

The Middle-East respiratory syndrome coronavirus (MERS-CoV) is a zoonotic virus that causes severe and often fatal respiratory disease in humans. Efforts to develop antibody-based therapies have focused on neutralizing antibodies that target the receptor binding domain of the viral spike protein thereby blocking receptor binding. Here, we developed a set of human monoclonal antibodies that target functionally distinct domains of the MERS-CoV spike protein. These antibodies belong to six distinct epitope groups and interfere with the three critical entry functions of the MERS-CoV spike protein: sialic acid binding, receptor binding and membrane fusion. Passive immunization with potently as well as with poorly neutralizing antibodies protected mice from lethal MERS-CoV challenge. Collectively, these antibodies offer new ways to gain humoral protection in humans against the emerging MERS-CoV by targeting different spike protein epitopes and functions.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Antivirais/imunologia , Infecções por Coronavirus/prevenção & controle , Coronavírus da Síndrome Respiratória do Oriente Médio/imunologia , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Infecções por Coronavirus/genética , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia , Epitopos/química , Epitopos/genética , Epitopos/imunologia , Humanos , Imunização Passiva , Camundongos , Coronavírus da Síndrome Respiratória do Oriente Médio/química , Coronavírus da Síndrome Respiratória do Oriente Médio/genética , Domínios Proteicos , Receptores Virais/genética , Receptores Virais/imunologia , Glicoproteína da Espícula de Coronavírus/genética
13.
Ind Eng Chem Res ; 58(5): 1834-1847, 2019 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-30774193

RESUMO

A high pressure semicontinuous batch electrolyzer is used to convert CO2 to formic acid/formate on a tin-based cathode using bipolar membranes (BPMs) and cation exchange membranes (CEMs). The effects of CO2 pressure up to 50 bar, electrolyte concentration, flow rate, cell potential, and the two types of membranes on the current density (CD) and Faraday efficiency (FE) for formic acid/formate are investigated. Increasing the CO2 pressure yields a high FE up to 90% at a cell potential of 3.5 V and a CD of ∼30 mA/cm2. The FE decreases significantly at higher cell potentials and current densities, and lower pressures. Up to 2 wt % formate was produced at a cell potential of 4 V, a CD of ∼100 mA/cm2, and a FE of 65%. The advantages and disadvantages of using BPMs and CEMs in electrochemical cells for CO2 conversion to formic acid/formate are discussed.

14.
Sci Rep ; 8(1): 9596, 2018 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-29941944

RESUMO

Endothelial cells and pericytes are integral cellular components of the vasculature with distinct interactive functionalities. To study dynamic interactions between these two cells we created two transgenic animal lines. A truncated eNOS (endothelial nitric oxide synthase) construct was used as a GFP tag for endothelial cell evaluation and an inducible Cre-lox recombination, under control of the Pdgfrb (platelet derived growth factor receptor beta) promoter, was created for pericyte assessment. Also, eNOStag-GFP animals were crossed with the already established Cspg4-DsRed mice expressing DsRed fluorescent protein in pericytes. For intravital imaging we used tumors implanted in the dorsal skinfold of these transgenic animals. This setup allowed us to study time and space dependent complexities, such as distribution, morphology, motility, and association between both vascular cell types in all angiogenetic stages, without the need for additional labeling. Moreover, as fluorescence was still clearly detectable after fixation, it is possible to perform comparative histology following intravital evaluation. These transgenic mouse lines form an excellent model to capture collective and individual cellular and subcellular endothelial cell - pericyte dynamics and will help answer key questions on the cellular and molecular relationship between these two cells.


Assuntos
Células Endoteliais/patologia , Imageamento Tridimensional , Microscopia Intravital , Pericitos/patologia , Animais , Comunicação Celular , Linhagem Celular Tumoral , Camundongos , Análise Espaço-Temporal
15.
J Infect Dis ; 217(2): 298-309, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29099932

RESUMO

Background: Carriage of Mycoplasma pneumoniae (Mp) in the nasopharynx is considered a prerequisite for pulmonary infection. It is interesting to note that Mp carriage is also detected after infection. Although B cells are known to be involved in pulmonary Mp clearance, their role in Mp carriage is unknown. Methods: In this study, we show in a mouse model that Mp persists in the nose after pulmonary infection, similar to humans. Results: Infection of mice enhanced Mp-specific immunoglobulin (Ig) M and IgG levels in serum and bronchoalveolar lavage fluid. However, nasal washes only contained elevated Mp-specific IgA. These differences in Ig compartmentalization correlated with differences in Mp-specific B cell responses between nose- and lung-draining lymphoid tissues. Moreover, transferred Mp-specific serum Igs had no effect on nasal carriage in B cell-deficient µMT mice, whereas this enabled µMT mice to clear pulmonary Mp infection. Conclusions: We report the first evidence that humoral immunity is limited in clearing Mp from the upper respiratory tract.


Assuntos
Linfócitos B/imunologia , Portador Sadio/imunologia , Mycoplasma pneumoniae/imunologia , Nasofaringe/imunologia , Nasofaringe/microbiologia , Pneumonia por Mycoplasma/imunologia , Animais , Anticorpos Antibacterianos/sangue , Imunoglobulina A/análise , Imunoglobulina G/sangue , Camundongos Endogâmicos C57BL , Mucosa Nasal/imunologia
16.
J Mol Cell Cardiol ; 88: 145-54, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26436984

RESUMO

Nitric oxide (NO) produced by endothelial NO synthase (eNOS) exerts beneficial effects in a variety of cardiovascular disease states. Studies on the benefit of eNOS activity in pressure-overload cardiac hypertrophy and dysfunction produced by aortic stenosis are equivocal, which may be due to different expression levels of eNOS or different severities of pressure-overload. Consequently, we investigated the effects of eNOS-expression level on cardiac hypertrophy and dysfunction produced by mild or severe pressure-overload. To unravel the impact of eNOS on pressure-overload cardiac dysfunction we subjected eNOS deficient, wildtype and eNOS overexpressing transgenic (eNOS-Tg) mice to 8weeks of mild or severe transverse aortic constriction (TAC) and studied cardiac geometry and function at the whole organ and tissue level. In both mild and severe TAC, lack of eNOS ameliorated, whereas eNOS overexpression aggravated, TAC-induced cardiac remodeling and dysfunction. Moreover, the detrimental effects of eNOS in severe TAC were associated with aggravation of TAC-induced NOS-dependent oxidative stress and by further elevation of eNOS monomer levels, consistent with enhanced eNOS uncoupling. In the presence of TAC, scavenging of reactive oxygen species with N-acetylcysteine reduced eNOS S-glutathionylation, eNOS monomer and NOS-dependent superoxide levels in eNOS-Tg mice to wildtype levels. Accordingly, N-acetylcysteine improved cardiac function in eNOS-Tg but not in wildtype mice with TAC. In conclusion, independent of the severity of TAC, eNOS aggravates cardiac remodeling and dysfunction, which appears due to TAC-induced eNOS uncoupling and superoxide production.


Assuntos
Cardiomegalia/enzimologia , Cardiomegalia/genética , Óxido Nítrico Sintase Tipo III/genética , Óxido Nítrico/metabolismo , Remodelação Ventricular , Acetilcisteína/farmacologia , Animais , Aorta/cirurgia , Cardiomegalia/etiologia , Cardiomegalia/patologia , Constrição Patológica/complicações , Constrição Patológica/cirurgia , Ativação Enzimática , Feminino , Sequestradores de Radicais Livres/farmacologia , Deleção de Genes , Regulação da Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Óxido Nítrico Sintase Tipo III/metabolismo , Estresse Oxidativo , Índice de Gravidade de Doença , Superóxidos/antagonistas & inibidores , Superóxidos/metabolismo
17.
Lab Invest ; 95(10): 1092-104, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26214584

RESUMO

The balance of nitric oxide (NO) versus superoxide generation has a major role in the initiation and progression of endothelial dysfunction. Under conditions of high glucose, endothelial nitric oxide synthase (eNOS) functions as a chief source of superoxide rather than NO. In order to improve NO bioavailability within the vessel wall in type-1 diabetes, we investigated treatment strategies that improve eNOS phosphorylation and NO-dependent vasorelaxation. We evaluated methods to increase the eNOS activity by (1) feeding Ins2(Akita) spontaneously diabetic (type-1) mice with l-arginine in the presence of sepiapterin, a precursor of tetrahydrobiopterin; (2) preventing eNOS/NO deregulation by the inclusion of inhibitor kappa B kinase beta (IKKß) inhibitor, salsalate, in the diet regimen in combination with l-arginine and sepiapterin; and (3) independently increasing eNOS expression to improve eNOS activity and associated NO production through generating Ins2(Akita) diabetic mice that overexpress human eNOS predominantly in vascular endothelial cells. Our results clearly demonstrated that diet supplementation with l-arginine, sepiapterin along with salsalate improved phosphorylation of eNOS and enhanced vasorelaxation of thoracic/abdominal aorta in type-1 diabetic mice. More interestingly, despite the overexpression of eNOS, the in-house generated transgenic eNOS-GFP (TgeNOS-GFP)-Ins2(Akita) cross mice showed an unanticipated effect of reduced eNOS phosphorylation and enhanced superoxide production. Our results demonstrate that enhancement of endogenous eNOS activity by nutritional modulation is more beneficial than increasing the endogenous expression of eNOS by gene therapy modalities.


Assuntos
Diabetes Mellitus Tipo 1/prevenção & controle , Suplementos Nutricionais , Endotélio Vascular/metabolismo , Hipoglicemiantes/uso terapêutico , Óxido Nítrico Sintase Tipo III/metabolismo , Inibidores de Proteínas Quinases/uso terapêutico , Processamento de Proteína Pós-Traducional , Animais , Aorta/citologia , Aorta/metabolismo , Aorta/fisiopatologia , Arginina/metabolismo , Arginina/uso terapêutico , Bovinos , Células Cultivadas , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/fisiopatologia , Endotélio Vascular/citologia , Endotélio Vascular/fisiopatologia , Feminino , Heterozigoto , Humanos , Hipoglicemiantes/metabolismo , Insulina/genética , Insulina/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Óxido Nítrico Sintase Tipo III/química , Óxido Nítrico Sintase Tipo III/genética , Fosforilação , Inibidores de Proteínas Quinases/metabolismo , Pterinas/metabolismo , Pterinas/uso terapêutico , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Salicilatos/metabolismo , Salicilatos/uso terapêutico , Desmame
18.
Clin Lab ; 60(10): 1659-62, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25651711

RESUMO

BACKGROUND: Phospholipid transfer protein (PLTP) is an emerging cardiometabolic risk factor. Plasma PLTP is elevated in humans with end-stage kidney disease and glomerular proteinuria, but the contribution of systemic PLTP elevation to the development of renal damage is unknown. We tested whether human PLTP expression in ApoE deficient mice (an atherosclerosis-prone model) results in renal insufficiency, albuminuria, or glomerulosclerosis. METHODS: Serum creatinine, albuminuria, as well as kidney and aortic arch histology were determined in 6 male huPLTPtgApoE-/- mice and 8 similarly aged male wild type mice fed a regular chow diet. RESULTS: huPLTPtgApoE-/- mice (2- to 3-fold elevated PLTP activity) showed marked aortic atherosclerosis. However, serum creatinine (p = 0.11) and albuminuria (p = 0.87) were not increased, whereas renal arteriolar atherosclerosis and glomerulosclerosis were not evident in this PLTP transgenic model. CONCLUSIONS: High systemic PLTP expression does not contribute significantly to a renal phenotype despite being implicated in systemic atherosclerosis.


Assuntos
Aorta Torácica/metabolismo , Doenças da Aorta/metabolismo , Apolipoproteínas E/deficiência , Aterosclerose/metabolismo , Glomerulonefrite/metabolismo , Proteínas de Transferência de Fosfolipídeos/metabolismo , Proteinúria/metabolismo , Insuficiência Renal/metabolismo , Animais , Aorta Torácica/patologia , Doenças da Aorta/genética , Doenças da Aorta/patologia , Apolipoproteínas E/genética , Aterosclerose/genética , Aterosclerose/patologia , Modelos Animais de Doenças , Genótipo , Glomerulonefrite/genética , Glomerulonefrite/patologia , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fenótipo , Proteínas de Transferência de Fosfolipídeos/genética , Proteinúria/genética , Proteinúria/patologia , Insuficiência Renal/genética , Insuficiência Renal/patologia , Fatores de Risco , Índice de Gravidade de Doença , Regulação para Cima
19.
Atherosclerosis ; 227(1): 37-42, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23313246

RESUMO

OBJECTIVE: Plasma phospholipid transfer protein (PLTP) plays a key role in lipoprotein metabolism. Its exact function in the development of atherosclerosis is still under debate however. We studied the effect of elevated PLTP expression in one of the most commonly used models of atherosclerosis, the ApoE deficient mouse. METHODS: Experiment 1: Plasma PLTP activity, total cholesterol, HDL cholesterol and atherosclerosis development was measured in ApoE deficient mice with or without elevated expression of PLTP. Experiment 2: The same parameters were measured in ApoE deficient mice after bone marrow transplantation from wild type mice or mice with elevated PLTP expression. Experiment 3: Similar to experiment 2, but using donor mice with an ApoE deficient background. RESULTS: Experiment 1: ApoE deficient mice have more than two times more atherosclerosis when overexpressing PLTP and a strongly decreased plasma level of HDL. Experiment 2: Bone marrow transplantation with ApoE proficient cells results in a strong reduction of plasma cholesterol in ApoE deficient acceptor mice. Still, elevated PLTP in bone marrow derived cells evoke a reduction of HDL cholesterol and increased atherosclerosis. Experiment 3: Bone marrow transplantation with ApoE deficient cells results in much higher cholesterol levels, but here too HDL cholesterol levels are reduced and atherosclerosis increased. CONCLUSION: In all the models with ApoE deficiency, elevated PLTP expression causes higher levels of diet-induced atherosclerosis coinciding with decreased plasma levels of HDL cholesterol.


Assuntos
Apolipoproteínas E/deficiência , Aterosclerose/etiologia , Proteínas de Transferência de Fosfolipídeos/biossíntese , Animais , Colesterol/sangue , HDL-Colesterol/sangue , Dieta Hiperlipídica , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL
20.
Invest Ophthalmol Vis Sci ; 53(11): 6833-50, 2012 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-22930723

RESUMO

PURPOSE: In ischemic retinopathies, the misdirection of reparative angiogenesis away from the hypoxic retina leads to pathologic neovascularization. Thus, therapeutic strategies that reverse this trend would be extremely beneficial. Nitric oxide (NO) produced by endothelial nitric oxide synthase (eNOS) is an important mediator of vascular endothelial growth factor (VEGF) function facilitating vascular growth and maturation. However, in addition to NO, eNOS can also produce superoxide (O(2)(-)), exacerbating pathology. Here, our aim was to investigate the effect of eNOS overexpression on vascular closure and subsequent recovery of the ischemic retina. METHODS: Mice overexpressing eNOS-GFP were subjected to oxygen-induced retinopathy (OIR) and changes in retinal vascularization quantified. Background angiogenic drive was assessed during vascular development and in aortic rings. NOS activity was measured by Griess assay or conversion of radiolabeled arginine to citrulline, nitrotyrosine (NT), and superoxide by immunolabeling and dihydroethidium fluorescence and VEGF by ELISA. RESULTS: In response to hyperoxia, enhanced eNOS expression led to increased NOS-derived superoxide and dysfunctional NO production, NT accumulation, and exacerbated vessel closure associated with tetrahydrobiopterin (BH4) insufficiency. Despite worse vaso-obliteration, eNOS overexpression resulted in elevated hypoxia-induced angiogenic drive, independent of VEGF production. This correlated with increased vascular branching similar to that observed in isolated aortas and during development. Enhanced recovery was also associated with neovascular tuft formation, which showed defective NO production and increased eNOS-derived superoxide and NT levels. CONCLUSIONS: In hyperoxia, reduced BH4 bioavailability causes overexpressed eNOS to become dysfunctional, exacerbating vaso-obliteration. In the proliferative phase, however, eNOS has important prorepair functions enhancing angiogenic growth potential and recovery in ischemia.


Assuntos
Óxido Nítrico Sintase Tipo III/biossíntese , Neovascularização Retiniana/enzimologia , Vasos Retinianos/enzimologia , Animais , Western Blotting , Proliferação de Células , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neovascularização Retiniana/patologia , Vasos Retinianos/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...