Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev E ; 101(3-1): 032901, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32290000

RESUMO

We use numerical simulations to study the flow of a bidisperse mixture of athermal, frictionless, soft-core two-dimensional spherocylinders driven by a uniform steady-state simple shear applied at a fixed volume and a fixed finite strain rate γ[over ̇]. Energy dissipation is via a viscous drag with respect to a uniformly sheared host fluid, giving a simple model for flow in a non-Brownian suspension with Newtonian rheology. Considering a range of packing fractions ϕ and particle asphericities α at small γ[over ̇], we study the angular rotation θ[over ̇]_{i} and the nematic orientational ordering S_{2} of the particles induced by the shear flow, finding a nonmonotonic behavior as the packing ϕ is varied. We interpret this nonmonotonic behavior as a crossover from dilute systems at small ϕ, where single-particle-like behavior occurs, to dense systems at large ϕ, where the geometry of the dense packing dominates and a random Poisson-like process for particle rotations results. We also argue that the finite nematic ordering S_{2} is a consequence of the shearing serving as an ordering field, rather than a result of long-range cooperative behavior among the particles. We arrive at these conclusions by consideration of (i) the distribution of waiting times for a particle to rotate by π, (ii) the behavior of the system under pure, as compared to simple, shearing, (iii) the relaxation of the nematic order parameter S_{2} when perturbed away from the steady state, and (iv) by construction, a numerical mean-field model for the rotational motion of a particle. Our results also help to explain the singular behavior observed when taking the α→0 limit approaching circular disks.

2.
Acta Crystallogr A Found Adv ; 75(Pt 2): 362-369, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30821269

RESUMO

Expressions for X-ray absorption and secondary scattering are developed for cylindrical sample geometries. The incident-beam size is assumed to be smaller than the sample and in general directed off-axis onto the cylindrical sample. It is shown that an offset beam has a non-negligible effect on both the absorption and multiple scattering terms, resulting in an asymmetric correction that must be applied to the measured scattering intensities. The integral forms of the corrections are first presented. A small-beam limit is then developed for easier computation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...