Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 158(21)2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37259996

RESUMO

Many sampling strategies commonly used in molecular dynamics, such as umbrella sampling and alchemical free energy methods, involve sampling from multiple states. The Multistate Bennett Acceptance Ratio (MBAR) formalism is a widely used way of recombining the resulting data. However, the error of the MBAR estimator is not well-understood: previous error analyses of MBAR assumed independent samples. In this work, we derive a central limit theorem for MBAR estimates in the presence of correlated data, further justifying the use of MBAR in practical applications. Moreover, our central limit theorem yields an estimate of the error that can be decomposed into contributions from the individual Markov chains used to sample the states. This gives additional insight into how sampling in each state affects the overall error. We demonstrate our error estimator on an umbrella sampling calculation of the free energy of isomerization of the alanine dipeptide and an alchemical calculation of the hydration free energy of methane. Our numerical results demonstrate that the time required for the Markov chain to decorrelate in individual states can contribute considerably to the total MBAR error, highlighting the importance of accurately addressing the effect of sample correlation.

2.
SIAM/ASA J Uncertain Quantif ; 8(3): 1139-1188, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-34611500

RESUMO

The Eigenvector Method for Umbrella Sampling (EMUS) [46] belongs to a popular class of methods in statistical mechanics which adapt the principle of stratified survey sampling to the computation of free energies. We develop a detailed theoretical analysis of EMUS. Based on this analysis, we show that EMUS is an efficient general method for computing averages over arbitrary target distributions. In particular, we show that EMUS can be dramatically more efficient than direct MCMC when the target distribution is multimodal or when the goal is to compute tail probabilities. To illustrate these theoretical results, we present a tutorial application of the method to a problem from Bayesian statistics.

3.
SIAM Rev Soc Ind Appl Math ; 60(4): 909-938, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-34650314

RESUMO

We present a general mathematical framework for trajectory stratification for simulating rare events. Trajectory stratification involves decomposing trajectories of the underlying process into fragments limited to restricted regions of state space (strata), computing averages over the distributions of the trajectory fragments within the strata with minimal communication between them, and combining those averages with appropriate weights to yield averages with respect to the original underlying process. Our framework reveals the full generality and flexibility of trajectory stratification, and it illuminates a common mathematical structure shared by existing algorithms for sampling rare events. We demonstrate the power of the framework by defining strata in terms of both points in time and path-dependent variables for efficiently estimating averages that were not previously tractable.

4.
J Chem Phys ; 145(8): 084115, 2016 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-27586912

RESUMO

Umbrella sampling efficiently yields equilibrium averages that depend on exploring rare states of a model by biasing simulations to windows of coordinate values and then combining the resulting data with physical weighting. Here, we introduce a mathematical framework that casts the step of combining the data as an eigenproblem. The advantage to this approach is that it facilitates error analysis. We discuss how the error scales with the number of windows. Then, we derive a central limit theorem for averages that are obtained from umbrella sampling. The central limit theorem suggests an estimator of the error contributions from individual windows, and we develop a simple and computationally inexpensive procedure for implementing it. We demonstrate this estimator for simulations of the alanine dipeptide and show that it emphasizes low free energy pathways between stable states in comparison to existing approaches for assessing error contributions. Our work suggests the possibility of using the estimator and, more generally, the eigenvector method for umbrella sampling to guide adaptation of the simulation parameters to accelerate convergence.

5.
SIAM J Matrix Anal Appl ; 36(3): 917-941, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26491218

RESUMO

For many Markov chains of practical interest, the invariant distribution is extremely sensitive to perturbations of some entries of the transition matrix, but insensitive to others; we give an example of such a chain, motivated by a problem in computational statistical physics. We have derived perturbation bounds on the relative error of the invariant distribution that reveal these variations in sensitivity. Our bounds are sharp, we do not impose any structural assumptions on the transition matrix or on the perturbation, and computing the bounds has the same complexity as computing the invariant distribution or computing other bounds in the literature. Moreover, our bounds have a simple interpretation in terms of hitting times, which can be used to draw intuitive but rigorous conclusions about the sensitivity of a chain to various types of perturbations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...