Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 11(8)2018 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-30103508

RESUMO

Atom Probe Tomography (APT), Transmission Electron Microscopy (TEM), and 3D mechanical calculations in complex geometry and anisotropic strain fields were employed to study the role of minor elements in the precipitation process of silicon and chromium nitrides in nitrided Fe⁻Si and Fe⁻Cr alloys, respectively. In nitrided Fe⁻Si alloys, an original sequence of Si3N4 precipitation was highlighted. Al⁻N clusters form first and act as nucleation sites for amorphous Si3N4 nitrides. This novel example of particle-simulated nucleation opens a new way to control Si3N4 precipitation in Fe⁻Si alloys. In nitrided Fe⁻Cr alloys, both the presence of iron in chromium nitrides and excess nitrogen in the ferritic matrix are unquestionably proved. Only a certain part of the so-called excess nitrogen is shown to be explained by the elastic accommodation of the misfit between nitride and the ferritic matrix. The presence of immobile excess nitrogen trapped at interfaces can be highly suspected.

2.
Microsc Microanal ; 23(2): 385-395, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28322178

RESUMO

Improved understanding of the interactions between solutes and the austenite/ferrite interface can benefit modeling of ferrite growth during austenite decomposition, as the transformation kinetic is significantly affected by solutes that influence interface mobility. Solute-interface interactions dominate solute segregation at the interface in binary systems, but in multi-component alloys, solute-solute interactions may also affect segregation. In this study, interface segregation in Fe-Mn-N is examined and compared with Fe-Mn-C, to reveal the extent to which C affects the segregation of Mn. Atom probe tomography (APT) is well-suited to analyze solute concentrations across the interface, as this technique combines high spatial resolution and compositional sensitivity. Measurements of Mn show that segregation is only observed for Fe-Mn-C. This demonstrates that Mn segregation is primarily driven by an affinity for C, which also segregates to the interface. However, the measurement of N in steels by APT may be affected by a variety of experimental factors. Therefore, in verifying the Fe-Mn-N result, systematic examination is conducted on the influence of pulsing method (voltage versus laser), sample preparation (ion milling versus electropolishing), and vacuum storage on the measured N concentration. Both laser pulsing and focused ion beam sample preparation are observed to decrease the apparent N concentration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...