Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 5612, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38987280

RESUMO

Natural selection can drive organisms to strikingly similar adaptive solutions, but the underlying molecular mechanisms often remain unknown. Several amphibians have independently evolved highly adhesive skin secretions (glues) that support a highly effective antipredator defence mechanism. Here we demonstrate that the glue of the Madagascan tomato frog, Dyscophus guineti, relies on two interacting proteins: a highly derived member of a widespread glycoprotein family and a galectin. Identification of homologous proteins in other amphibians reveals that these proteins attained a function in skin long before glues evolved. Yet, major elevations in their expression, besides structural changes in the glycoprotein (increasing its structural disorder and glycosylation), caused the independent rise of glues in at least two frog lineages. Besides providing a model for the chemical functioning of animal adhesive secretions, our findings highlight how recruiting ancient molecular templates may facilitate the recurrent evolution of functional innovations.


Assuntos
Anuros , Pele , Animais , Pele/metabolismo , Anuros/genética , Anuros/metabolismo , Filogenia , Anfíbios/metabolismo , Anfíbios/genética , Evolução Molecular , Glicoproteínas/metabolismo , Glicoproteínas/genética , Galectinas/metabolismo , Galectinas/genética , Evolução Biológica , Proteínas de Anfíbios/metabolismo , Proteínas de Anfíbios/genética
2.
RNA Biol ; 19(1): 622-635, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35491929

RESUMO

Heterogeneous nuclear ribonucleoproteins (hnRNP) function in RNA processing, have RNA-recognition motifs (RRMs) and intrinsically disordered, low-complexity domains (LCDs). While RRMs are drivers of RNA binding, there is only limited knowledge about the RNA interaction by the LCD of some hnRNPs. Here, we show that the LCD of hnRNPA2 interacts with RNA via an embedded Tyr/Gly-rich region which is a disordered RNA-binding motif. RNA binding is maintained upon mutating tyrosine residues to phenylalanines, but abrogated by mutating to alanines, thus we term the RNA-binding region 'F/YGG motif'. The F/YGG motif can bind a broad range of structured (e.g. tRNA) and disordered (e.g. polyA) RNAs, but not rRNA. As the F/YGG otif can also interact with DNA, we consider it a general nucleic acid-binding motif. hnRNPA2 LCD can form dense droplets, by liquid-liquid phase separation (LLPS). Their formation is inhibited by RNA binding, which is mitigated by salt and 1,6-hexanediol, suggesting that both electrostatic and hydrophobic interactions feature in the F/YGG motif. The D290V mutant also binds RNA, which interferes with both LLPS and aggregation thereof. We found homologous regions in a broad range of RNA- and DNA-binding proteins in the human proteome, suggesting that the F/YGG motif is a general nucleic acid-interaction motif.


Assuntos
Ribonucleoproteínas Nucleares Heterogêneas , RNA , DNA , Proteínas de Ligação a DNA/metabolismo , Humanos , RNA/genética , RNA/metabolismo
3.
Biomolecules ; 11(4)2021 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-33917983

RESUMO

Aggregates of TAR DNA-binding protein (TDP-43) are a hallmark of several neurodegenerative disorders, including amyotrophic lateral sclerosis (ALS). Although TDP-43 aggregates are an undisputed pathological species at the end stage of these diseases, the molecular changes underlying the initiation of aggregation are not fully understood. The aim of this study was to investigate how phase separation affects self-aggregation and aggregation seeded by pre-formed aggregates of either the low-complexity domain (LCD) or its short aggregation-promoting regions (APRs). By systematically varying the physicochemical conditions, we observed that liquid-liquid phase separation (LLPS) promotes spontaneous aggregation. However, we noticed less efficient seeded aggregation in phase separating conditions. By analyzing a broad range of conditions using the Hofmeister series of buffers, we confirmed that stabilizing hydrophobic interactions prevail over destabilizing electrostatic forces. RNA affected the cooperativity between LLPS and aggregation in a "reentrant" fashion, having the strongest positive effect at intermediate concentrations. Altogether, we conclude that conditions which favor LLPS enhance the subsequent aggregation of the TDP-43 LCD with complex dependence, but also negatively affect seeding kinetics.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Extração Líquido-Líquido , Agregados Proteicos , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Recuperação de Fluorescência Após Fotodegradação , Humanos , Interações Hidrofóbicas e Hidrofílicas , Peptídeos/síntese química , Peptídeos/química , Peptídeos/metabolismo , Domínios Proteicos , RNA/química , RNA/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Eletricidade Estática
5.
Commun Biol ; 4(1): 77, 2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33469149

RESUMO

Understanding the kinetics, thermodynamics, and molecular mechanisms of liquid-liquid phase separation (LLPS) is of paramount importance in cell biology, requiring reproducible methods for studying often severely aggregation-prone proteins. Frequently applied approaches for inducing LLPS, such as dilution of the protein from an urea-containing solution or cleavage of its fused solubility tag, often lead to very different kinetic behaviors. Here we demonstrate that at carefully selected pH values proteins such as the low-complexity domain of hnRNPA2, TDP-43, and NUP98, or the stress protein ERD14, can be kept in solution and their LLPS can then be induced by a jump to native pH. This approach represents a generic method for studying the full kinetic trajectory of LLPS under near native conditions that can be easily controlled, providing a platform for the characterization of physiologically relevant phase-separation behavior of diverse proteins.


Assuntos
Proteínas de Ligação a DNA/química , Extração Líquido-Líquido/métodos , Fenômenos Biofísicos/fisiologia , Proteínas de Ligação a DNA/metabolismo , Cinética , Domínios Proteicos/fisiologia , Termodinâmica
6.
FEBS J ; 287(10): 1924-1935, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32080961

RESUMO

Cellular organelles that lack a surrounding lipid bilayer, such as the nucleolus and stress granule, represent a newly recognized, general paradigm of cellular organization. The formation of such biomolecular condensates that include 'membraneless organelles' (MLOs) by liquid-liquid phase separation (LLPS) has been in the focus of a surge of recent studies. Through a combination of in vitro and in vivo approaches, thousands of potential phase-separating proteins have been identified, and it was found that different cellular MLOs share many common components. These perplexing observations raise the question of how cells regulate the timing and specificity of LLPS, and ensure that different MLOs form and disperse at the right moment and cellular location and can preserve their identity and physical separation. This guide gives an overview of basic regulatory mechanisms, which manifest through the action of intrinsic regulatory elements, alternative splicing, post-translational modifications, and a broad range of phase-separating partners. We also elaborate on the cellular integration of these different mechanisms and highlight how complex regulation can orchestrate the parallel functioning of a dozen or so different MLOs in the cell.


Assuntos
Bicamadas Lipídicas/química , Organelas/química , Processamento de Proteína Pós-Traducional/genética , Proteínas/genética , Citoplasma/química , Citoplasma/genética , Humanos , Bicamadas Lipídicas/metabolismo , Organelas/genética , Proteínas/química
7.
Proc Natl Acad Sci U S A ; 116(16): 7889-7898, 2019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30926670

RESUMO

Phase separation of multivalent protein and RNA molecules underlies the biogenesis of biomolecular condensates such as membraneless organelles. In vivo, these condensates encompass hundreds of distinct types of molecules that typically organize into multilayered structures supporting the differential partitioning of molecules into distinct regions with distinct material properties. The interplay between driven (active) versus spontaneous (passive) processes that are required for enabling the formation of condensates with coexisting layers of distinct material properties remains unclear. Here, we deploy systematic experiments and simulations based on coarse-grained models to show that the collective interactions among the simplest, biologically relevant proteins and archetypal RNA molecules are sufficient for driving the spontaneous emergence of multilayered condensates with distinct material properties. These studies yield a set of rules regarding homotypic and heterotypic interactions that are likely to be relevant for understanding the interplay between active and passive processes that control the formation of functional biomolecular condensates.


Assuntos
Proteínas Intrinsicamente Desordenadas , Transição de Fase , RNA , Biologia Computacional , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/metabolismo , Proteínas Intrinsicamente Desordenadas/fisiologia , Simulação de Dinâmica Molecular , Organelas/química , Organelas/metabolismo , RNA/química , RNA/metabolismo , RNA/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...