Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecology ; 104(7): e4105, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37212446

RESUMO

Niche modeling is typically used to assess the effects of anthropogenic land use and climate change on species distributions and to inform spatial conservation planning. These models focus on the suitability of local biotic and abiotic conditions for a species in environmental space (E-space). Although movements also affect species occurrence, efforts to formally integrate geographic space (G-space) into niche modeling have been hindered by the lack of comprehensive theoretical frameworks. We propose the "functional habitat" framework to define areas that are simultaneously of high quality in E-space, and functionally connected to other suitable habitats in G-space. Originating in metapopulation ecology, approaches have been developed to assess the amount of suitable connected habitats, based on the proximity between pairs of locations. Using network theory, which operates in topological space (T-space, defined by a network), we extended these metapopulation approaches to integrate movement constraints in G-space with niche modeling in E-space. We demonstrate the functional habitat framework using empirical data (GPS tracking and population monitoring) throughout the European wild mountain reindeer (Rangifer t. tarandus) distribution range. We show that functional habitat outperforms traditional suitability in explaining the species' distribution. This approach integrates effects from habitat loss and fragmentation for spatial conservation planning, and avoids overemphasizing small, inaccessible areas with locally suitable habitats. The functional habitat framework formally integrates biotic, abiotic, and movement constraints in niche modeling using network theory, thus opening a wide range of applications in spatial conservation planning.


Assuntos
Ecologia , Ecossistema , Mudança Climática , Movimento , Conservação dos Recursos Naturais
2.
Ambio ; 52(4): 757-768, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36759433

RESUMO

Although biodiversity is crucial for Sustainable Development Goals (SDGs), following the current trajectory, we risk failing SDG 15. Using a new indicator quantifying the loss of functional habitat (habitat that is simultaneously suitable and well-connected), we show that the real impact of renewable energy is far larger than previously assumed. Specifically, we estimate that the construction of hydropower reservoirs in south Norway caused a loss of ca. 222 km2 of functional habitat for wild reindeer (Rangifer tarandus)-which is far larger than assumed based on land inundation indices (110 km2). Fully mitigating these impacts is challenging: scenario analyses reveal that the measures proposed by societal actors would yield only a fraction of the habitat lost (2-12 km2) and could cause trade-off risks with other SDGs. Using indices of functional connectivity is crucial for environmental impact assessments, as entire ecological networks for several species can be affected far beyond the reservoirs.


Assuntos
Rena , Desenvolvimento Sustentável , Animais , Ecossistema , Biodiversidade , Noruega
4.
Ecol Evol ; 12(4): e8795, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35386875

RESUMO

Like large carnivores, hunters both kill and scare ungulates, and thus might indirectly affect plant performance through trophic cascades. In this study, we hypothesized that intensive hunting and enduring fear of humans have caused moose and other forest ungulates to partly avoid areas near human infrastructure (perceived hunting risk), with positive cascading effects on recruitment of trees. Using data from the Norwegian forest inventory, we found decreasing browsing pressure and increasing tree recruitment in areas close to roads and houses, where ungulates are more likely to encounter humans. However, although browsing and recruitment were negatively related, reduced browsing was only responsible for a small proportion of the higher tree recruitment near human infrastructure. We suggest that the apparently weak cascading effect occurs because the recorded browsing pressure only partly reflects the long-term browsing intensity close to humans. Accordingly, tree recruitment was also related to the density of small trees 5-10 years earlier, which was higher close to human infrastructure. Hence, if small tree density is a product of the browsing pressure in the past, the cascading effect is probably stronger than our estimates suggest. Reduced browsing near roads and houses is most in line with risk avoidance driven by fear of humans (behaviorally mediated), and not because of excessive hunting and local reduction in ungulate density (density mediated).

5.
Ecol Evol ; 11(21): 15191-15204, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34765170

RESUMO

Many publications make use of opportunistic data, such as citizen science observation data, to infer large-scale properties of species' distributions. However, the few publications that use opportunistic citizen science data to study animal ecology at a habitat level do so without accounting for spatial biases in opportunistic records or using methods that are difficult to generalize. In this study, we explore the biases that exist in opportunistic observations and suggest an approach to correct for them. We first examined the extent of the biases in opportunistic citizen science observations of three wild ungulate species in Norway by comparing them to data from GPS telemetry. We then quantified the extent of the biases by specifying a model of the biases. From the bias model, we sampled available locations within the species' home range. Along with opportunistic observations, we used the corrected availability locations to estimate a resource selection function (RSF). We tested this method with simulations and empirical datasets for the three species. We compared the results of our correction method to RSFs obtained using opportunistic observations without correction and to RSFs using GPS-telemetry data. Finally, we compared habitat suitability maps obtained using each of these models. Opportunistic observations are more affected by human access and visibility than locations derived from GPS telemetry. This has consequences for drawing inferences about species' ecology. Models naïvely using opportunistic observations in habitat-use studies can result in spurious inferences. However, sampling availability locations based on the spatial biases in opportunistic data improves the estimation of the species' RSFs and predicted habitat suitability maps in some cases. This study highlights the challenges and opportunities of using opportunistic observations in habitat-use studies. While our method is not foolproof it is a first step toward unlocking the potential of opportunistic citizen science data for habitat-use studies.

6.
PLoS One ; 16(11): e0260159, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34797852

RESUMO

Sustainable wildlife harvest is challenging due to the complexity of uncertain social-ecological systems, and diverse stakeholder perspectives of sustainability. In these systems, semi-complex stochastic simulation models can provide heuristics that bridge the gap between highly simplified theoretical models and highly context-specific case-studies. Such heuristics allow for more nuanced recommendations in low-knowledge contexts, and an improved understanding of model sensitivity and transferability to novel contexts. We develop semi-complex Management Strategy Evaluation (MSE) models capturing dynamics and variability in ecological processes, monitoring, decision-making, and harvest implementation, under a diverse range of contexts. Results reveal the fundamental challenges of achieving sustainability in wildlife harvest. Environmental contexts were important in determining optimal harvest parameters, but overall, evaluation contexts more strongly influenced perceived outcomes, optimal harvest parameters and optimal harvest strategies. Importantly, simple composite metrics popular in the theoretical literature (e.g. focusing on maximizing yield and population persistence only) often diverged from more holistic composite metrics that include a wider range of population and harvest objectives, and better reflect the trade-offs in real world applied contexts. While adaptive harvest strategies were most frequently preferred, particularly for more complex environmental contexts (e.g. high uncertainty or variability), our simulations map out cases where these heuristics may not hold. Despite not always being the optimal solution, overall adaptive harvest strategies resulted in the least value forgone, and are likely to give the best outcomes under future climatic variability and uncertainty. This demonstrates the potential value of heuristics for guiding applied management.


Assuntos
Animais Selvagens/crescimento & desenvolvimento , Heurística/fisiologia , Animais , Animais Selvagens/fisiologia , Benchmarking/métodos , Simulação por Computador , Ecossistema , Modelos Biológicos , Dinâmica Populacional , Incerteza
7.
iScience ; 24(9): 103083, 2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34585121

RESUMO

A critical question in the conservation of large mammals in the Anthropocene is to know the extent to which they can tolerate human disturbance. Surprisingly, little quantitative data is available about large-scale effects of human activity and land use on their broad scale distribution in Europe. In this study, we quantify the relative importance of human land use and protected areas as opposed to biophysical constraints on large mammal distribution. We analyze data on large mammal distribution to quantify the relative effect of anthropogenic variables on species' distribution as opposed to biophysical constraints. We finally assess the effect of anthropogenic variables on the size of the species' niche by simulating a scenario where we assumed no anthropogenic pressure on the landscape. Results show that large mammal distribution is primarily constrained by biophysical constraints rather than anthropogenic variables. This finding offers grounds for cautious optimism concerning wildlife conservation in the Anthropocene.

8.
Science ; 359(6374): 466-469, 2018 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-29371471

RESUMO

Animal movement is fundamental for ecosystem functioning and species survival, yet the effects of the anthropogenic footprint on animal movements have not been estimated across species. Using a unique GPS-tracking database of 803 individuals across 57 species, we found that movements of mammals in areas with a comparatively high human footprint were on average one-half to one-third the extent of their movements in areas with a low human footprint. We attribute this reduction to behavioral changes of individual animals and to the exclusion of species with long-range movements from areas with higher human impact. Global loss of vagility alters a key ecological trait of animals that affects not only population persistence but also ecosystem processes such as predator-prey interactions, nutrient cycling, and disease transmission.


Assuntos
Migração Animal , Atividades Humanas , Mamíferos , Animais , Sistemas de Informação Geográfica , Humanos
9.
J Anim Ecol ; 85(1): 43-53, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25056207

RESUMO

Impediments to animal movement are ubiquitous and vary widely in both scale and permeability. It is essential to understand how impediments alter ecological dynamics via their influence on animal behavioural strategies governing space use and, for anthropogenic features such as roads and fences, how to mitigate these effects to effectively manage species and landscapes. Here, we focused primarily on barriers to movement, which we define as features that cannot be circumnavigated but may be crossed. Responses to barriers will be influenced by the movement capabilities of the animal, its proximity to the barriers, and habitat preference. We developed a mechanistic modelling framework for simultaneously quantifying the permeability and proximity effects of barriers on habitat preference and movement. We used simulations based on our model to demonstrate how parameters on movement, habitat preference and barrier permeability can be estimated statistically. We then applied the model to a case study of road effects on wild mountain reindeer summer movements. This framework provided unbiased and precise parameter estimates across a range of strengths of preferences and barrier permeabilities. The quality of permeability estimates, however, was correlated with the number of times the barrier is crossed and the number of locations in proximity to barriers. In the case study we found that reindeer avoided areas near roads and that roads are semi-permeable barriers to movement. There was strong avoidance of roads extending up to c. 1 km for four of five animals, and having to cross roads reduced the probability of movement by 68·6% (range 3·5-99·5%). Human infrastructure has embedded within it the idea of networks: nodes connected by linear features such as roads, rail tracks, pipelines, fences and cables, many of which divide the landscape and limit animal movement. The unintended but potentially profound consequences of infrastructure on animals remain poorly understood. The rigorous framework for simultaneously quantifying movement, habitat preference and barrier permeability developed here begins to address this knowledge gap.


Assuntos
Distribuição Animal , Ecossistema , Rena/fisiologia , Animais , Modelos Biológicos , Movimento , Noruega , Tecnologia de Sensoriamento Remoto/veterinária , Estações do Ano
10.
J Anim Ecol ; 85(1): 11-20, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25786026

RESUMO

Habitats have substantial influence on the distribution and abundance of animals. Animals' selective movement yields their habitat use. Animals generally are more abundant in habitats that are selected most strongly. Models of habitat selection can be used to distribute animals on the landscape or their distribution can be modelled based on data of habitat use, occupancy, intensity of use or counts of animals. When the population is at carrying capacity or in an ideal-free distribution, habitat selection and related metrics of habitat use can be used to estimate abundance. If the population is not at equilibrium, models have the flexibility to incorporate density into models of habitat selection; but abundance might be influenced by factors influencing fitness that are not directly related to habitat thereby compromising the use of habitat-based models for predicting population size. Scale and domain of the sampling frame, both in time and space, are crucial considerations limiting application of these models. Ultimately, identifying reliable models for predicting abundance from habitat data requires an understanding of the mechanisms underlying population regulation and limitation.


Assuntos
Distribuição Animal , Ecossistema , Animais , Modelos Biológicos , Movimento , Densidade Demográfica
11.
J Anim Ecol ; 85(1): 54-68, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26412564

RESUMO

Decreasing rate of migration in several species as a consequence of climate change and anthropic pressure, together with increasing evidence of space-use strategies intermediate between residency and complete migration, are very strong motivations to evaluate migration occurrence and features in animal populations. The main goal of this paper was to perform a relative comparison between methods for identifying and characterizing migration at the individual and population level on the basis of animal location data. We classified 104 yearly individual trajectories from five populations of three deer species as migratory or non-migratory, by means of three methods: seasonal home range overlap, spatio-temporal separation of seasonal clusters and the Net Squared Displacement (NSD) method. For migratory cases, we also measured timing and distance of migration and residence time on the summer range. Finally, we compared the classification in migration cases across methods and populations. All methods consistently identified migration at the population level, that is, they coherently distinguished between complete or almost complete migratory populations and partially migratory populations. However, in the latter case, methods coherently classified only about 50% of the single cases, that is they classified differently at the individual-animal level. We therefore infer that the comparison of methods may help point to 'less-stereotyped' cases in the residency-to-migration continuum. For cases consistently classified by all methods, no significant differences were found in migration distance, or residence time on summer ranges. Timing of migration estimated by NSD was earlier than by the other two methods, both for spring and autumn migrations. We suggest three steps to identify improper inferences from migration data and to enhance understanding of intermediate space-use strategies. We recommend (i) classifying migration behaviours using more than one method, (ii) performing sensitivity analysis on method parameters to identify the extent of the differences and (iii) investigating inconsistently classified cases as these may often be ecologically interesting (i.e. less-stereotyped migratory behaviours).


Assuntos
Migração Animal , Cervos/fisiologia , Ecologia/métodos , Etologia/métodos , Comportamento de Retorno ao Território Vital , Animais , Alemanha , Movimento , Noruega , Rena/fisiologia , Tecnologia de Sensoriamento Remoto/veterinária , Estações do Ano
12.
J Anim Ecol ; 85(1): 32-42, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25950737

RESUMO

The loss, fragmentation and degradation of habitat everywhere on Earth prompts increasing attention to identifying landscape features that support animal movement (corridors) or impedes it (barriers). Most algorithms used to predict corridors assume that animals move through preferred habitat either optimally (e.g. least cost path) or as random walkers (e.g. current models), but neither extreme is realistic. We propose that corridors and barriers are two sides of the same coin and that animals experience landscapes as spatiotemporally dynamic corridor-barrier continua connecting (separating) functional areas where individuals fulfil specific ecological processes. Based on this conceptual framework, we propose a novel methodological approach that uses high-resolution individual-based movement data to predict corridor-barrier continua with increased realism. Our approach consists of two innovations. First, we use step selection functions (SSF) to predict friction maps quantifying corridor-barrier continua for tactical steps between consecutive locations. Secondly, we introduce to movement ecology the randomized shortest path algorithm (RSP) which operates on friction maps to predict the corridor-barrier continuum for strategic movements between functional areas. By modulating the parameter Ѳ, which controls the trade-off between exploration and optimal exploitation of the environment, RSP bridges the gap between algorithms assuming optimal movements (when Ѳ approaches infinity, RSP is equivalent to LCP) or random walk (when Ѳ → 0, RSP → current models). Using this approach, we identify migration corridors for GPS-monitored wild reindeer (Rangifer t. tarandus) in Norway. We demonstrate that reindeer movement is best predicted by an intermediate value of Ѳ, indicative of a movement trade-off between optimization and exploration. Model calibration allows identification of a corridor-barrier continuum that closely fits empirical data and demonstrates that RSP outperforms models that assume either optimality or random walk. The proposed approach models the multiscale cognitive maps by which animals likely navigate real landscapes and generalizes the most common algorithms for identifying corridors. Because suboptimal, but non-random, movement strategies are likely widespread, our approach has the potential to predict more realistic corridor-barrier continua for a wide range of species.


Assuntos
Distribuição Animal , Ecologia/métodos , Ecossistema , Etologia/métodos , Modelos Biológicos , Rena/fisiologia , Animais , Ecologia/instrumentação , Etologia/instrumentação , Movimento , Noruega , Tecnologia de Sensoriamento Remoto/veterinária
13.
J Anim Ecol ; 85(1): 21-31, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25980987

RESUMO

Animal space use has been studied by focusing either on geographic (e.g. home ranges, species' distribution) or on environmental (e.g. habitat use and selection) space. However, all patterns of space use emerge from individual movements, which are the primary means by which animals change their environment. Individuals increase their use of a given area by adjusting two key movement components: the duration of their visit and/or the frequency of revisits. Thus, in spatially heterogeneous environments, animals exploit known, high-quality resource areas by increasing their residence time (RT) in and/or decreasing their time to return (TtoR) to these areas. We expected that spatial variation in these two movement properties should lead to observed patterns of space use in both geographic and environmental spaces. We derived a set of nine predictions linking spatial distribution of movement properties to emerging space-use patterns. We predicted that, at a given scale, high variation in RT and TtoR among habitats leads to strong habitat selection and that long RT and short TtoR result in a small home range size. We tested these predictions using moose (Alces alces) GPS tracking data. We first modelled the relationship between landscape characteristics and movement properties. Then, we investigated how the spatial distribution of predicted movement properties (i.e. spatial autocorrelation, mean, and variance of RT and TtoR) influences home range size and hierarchical habitat selection. In landscapes with high spatial autocorrelation of RT and TtoR, a high variation in both RT and TtoR occurred in home ranges. As expected, home range location was highly selective in such landscapes (i.e. second-order habitat selection); RT was higher and TtoR lower within the selected home range than outside, and moose home ranges were small. Within home ranges, a higher variation in both RT and TtoR was associated with higher selectivity among habitat types (i.e. third-order habitat selection). Our findings show how patterns of geographic and environmental space use correspond to the two sides of a coin, linked by movement responses of individuals to environmental heterogeneity. By demonstrating the potential to assess the consequences of altering RT or TtoR (e.g. through human disturbance or climatic changes) on home range size and habitat selection, our work sets the basis for new theoretical and methodological advances in movement ecology.


Assuntos
Distribuição Animal , Cervos/fisiologia , Ecossistema , Comportamento de Retorno ao Território Vital , Movimento , Animais , Modelos Biológicos , Tecnologia de Sensoriamento Remoto/veterinária
14.
PLoS One ; 10(8): e0136057, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26288228

RESUMO

An individual's choices are shaped by its experience, a fundamental property of behavior important to understanding complex processes. Learning and memory are observed across many taxa and can drive behaviors, including foraging behavior. To explore the conditions under which memory provides an advantage, we present a continuous-space, continuous-time model of animal movement that incorporates learning and memory. Using simulation models, we evaluate the benefit memory provides across several types of landscapes with variable-quality resources and compare the memory model within a nested hierarchy of simpler models (behavioral switching and random walk). We find that memory almost always leads to improved foraging success, but that this effect is most marked in landscapes containing sparse, contiguous patches of high-value resources that regenerate relatively fast and are located in an otherwise devoid landscape. In these cases, there is a large payoff for finding a resource patch, due to size, value, or locational difficulty. While memory-informed search is difficult to differentiate from other factors using solely movement data, our results suggest that disproportionate spatial use of higher value areas, higher consumption rates, and consumption variability all point to memory influencing the movement direction of animals in certain ecosystems.


Assuntos
Comportamento Apetitivo/fisiologia , Comportamento Alimentar , Locomoção/fisiologia , Memória/fisiologia , Comportamento Espacial/fisiologia , Animais , Simulação por Computador , Aprendizagem , Modelos Biológicos
15.
PLoS One ; 8(7): e65493, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23874381

RESUMO

Habitat selection studies generally assume that animals select habitat and food resources at multiple scales to maximise their fitness. However, animals sometimes prefer habitats of apparently low quality, especially when considering the costs associated with spatially heterogeneous human disturbance. We used spatial variation in human disturbance, and its consequences on lynx survival, a direct fitness component, to test the Hierarchical Habitat Selection hypothesis from a population of Eurasian lynx Lynx lynx in southern Norway. Data from 46 lynx monitored with telemetry indicated that a high proportion of forest strongly reduced the risk of mortality from legal hunting at the home range scale, while increasing road density strongly increased such risk at the finer scale within the home range. We found hierarchical effects of the impact of human disturbance, with a higher road density at a large scale reinforcing its negative impact at a fine scale. Conversely, we demonstrated that lynx shifted their habitat selection to avoid areas with the highest road densities within their home ranges, thus supporting a compensatory mechanism at fine scale enabling lynx to mitigate the impact of large-scale disturbance. Human impact, positively associated with high road accessibility, was thus a stronger driver of lynx space use at a finer scale, with home range characteristics nevertheless constraining habitat selection. Our study demonstrates the truly hierarchical nature of habitat selection, which aims at maximising fitness by selecting against limiting factors at multiple spatial scales, and indicates that scale-specific heterogeneity of the environment is driving individual spatial behaviour, by means of trade-offs across spatial scales.


Assuntos
Carnívoros/fisiologia , Ecossistema , Lynx/fisiologia , Veículos Automotores , Seleção Genética/fisiologia , Sobrevida/fisiologia , Animais , Feminino , Comportamento de Retorno ao Território Vital/fisiologia , Atividades Humanas , Humanos , Masculino , Comportamento Espacial/fisiologia
16.
J Anim Ecol ; 82(4): 770-80, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23414218

RESUMO

Animal movements are the primary behavioural adaptation to spatiotemporal heterogeneity in resource availability. Depending on their spatiotemporal scale, movements have been categorized into distinct functional groups (e.g. foraging movements, dispersal, migration), and have been studied using different methodologies. We suggest striving towards the development of a coherent framework based on the ultimate function of all movement types, which is to increase individual fitness through an optimal exploitation of resources varying in space and time. We developed a novel approach to simultaneously study movements at different spatiotemporal scales based on the following proposed theory: the length and frequency of animal movements are determined by the interaction between temporal autocorrelation in resource availability and spatial autocorrelation in changes in resource availability. We hypothesized that for each time interval the spatiotemporal scales of moose Alces alces movements correspond to the spatiotemporal scales of variation in the gains derived from resource exploitation when taking into account the costs of movements (represented by their proxies, forage availability NDVI and snow depth respectively). The scales of change in NDVI and snow were quantified using wave theory, and were related to the scale of moose movement using linear mixed models. In support of the proposed theory we found that frequent, smaller scale movements were triggered by fast, small-scale ripples of changes, whereas infrequent, larger scale movements matched slow, large-scale waves of change in resource availability. Similarly, moose inhabiting ranges characterized by larger scale waves of change in the onset of spring migrated longer distances. We showed that the scales of movements are driven by the scales of changes in the net profitability of trophic resources. Our approach can be extended to include drivers of movements other than trophic resources (e.g. population density, density of related individuals, predation risk) and may facilitate the assessment of the impact of environmental changes on community dynamics and conservation.


Assuntos
Cervos/fisiologia , Ecossistema , Modelos Biológicos , Atividade Motora , Animais , Demografia , Feminino , Masculino , Noruega , Fatores de Tempo
17.
J Anim Ecol ; 82(2): 290-300, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23039315

RESUMO

Movement is fundamental to individual and population dynamics, as it allows individuals to meet their basic requirements. Although movement patterns reflect interactions between internal and external factors, only few studies have examined the effects of these factors on movement simultaneously, and they generally focused on particular biological contexts (e.g. dispersal, foraging). However, the relative importance of these factors in driving individual routine movements might reflect a species' potential flexibility to cope with landscape changes and therefore buffer their potential impact on fitness. We used data from GPS collars on Scandinavian brown bears to investigate the relative role of these factors, as well as an additional factor (period of the year) on routine movements at two spatial scales (hourly and daily relocations). As expected, internal factors played a major role in driving movement, compared to external factors at both scales, but its relative importance was greater at a finer scale. In particular, the interaction between reproductive status and period of the year was one of the most influential variables, females being constrained by the movement capacity of their cubs in the first periods of the year. The effect of human disturbance on movement was also greater for females with cubs than for lone females. This study showed how reciprocal modulation of internal and external factors is shaping space use of brown bears. We stress that these factors should be studied simultaneously to avoid the risk of obtaining context-dependent inferences. Moreover, the study of their relative contribution is also highly relevant in the context of multiple-use landscapes, as human activities generally affect the landscape more than they affect the internal states of an individual. Species or individuals with important internal constraints should be less responsive to changes in their environment as they have less freedom from internal constraints and should thus be more sensitive to human alteration of the landscape, as shown for females with cubs in this study.


Assuntos
Atividade Motora/fisiologia , Ursidae/fisiologia , Envelhecimento , Sistemas de Identificação Animal , Animais , Demografia , Ecossistema , Comportamento Alimentar , Feminino , Reprodução
18.
Am Nat ; 180(4): 407-24, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22976006

RESUMO

The forage-maturation hypothesis (FMH) states that herbivores migrate along a phenological gradient of plant development in order to maximize energy intake. Despite strong support for the FMH, the actual relationship between plant phenology and ungulate movement has remained enigmatic. We linked plant phenology (MODIS-normalized difference vegetation index [NDVI] data) and space use of 167 migratory and 78 resident red deer (Cervus elaphus), using a space-time-time matrix of "springness," defined as the instantaneous rate of green-up. Consistent with the FMH, migrants experienced substantially greater access to early plant phenology than did residents. Deer were also more likely to migrate in areas where migration led to greater gains in springness. Rather than "surfing the green wave" during migration, migratory red deer moved rapidly from the winter to the summer range, thereby "jumping the green wave." However, migrants and, to a lesser degree, residents did track phenological green-up through parts of the growing season by making smaller-scale adjustments in habitat use. Despite pronounced differences in their life histories, we found only marginal differences between male and female red deer in this study. Those differences that we did detect pointed toward additional constraints on female space-use tactics, such as those posed by calving and caring for dependent offspring. We conclude that whereas in some systems migration itself is a way to surf the green wave, in others it may simply be a means to reconnect with phenological spring at the summer range. In the light of ubiquitous anthropogenic environmental change, understanding the relationship between the green wave and ungulate space use has important consequences for the management and conservation of migratory ungulates and the phenomenon of migration itself.


Assuntos
Migração Animal , Cervos/fisiologia , Desenvolvimento Vegetal , Estações do Ano , Animais , Mudança Climática
19.
Oecologia ; 168(1): 231-43, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21766188

RESUMO

Identifying factors shaping variation in resource selection is central for our understanding of the behaviour and distribution of animals. We examined summer habitat selection and space use by 108 Global Positioning System (GPS)-collared moose in Norway in relation to sex, reproductive status, habitat quality, and availability. Moose selected habitat types based on a combination of forage quality and availability of suitable habitat types. Selection of protective cover was strongest for reproducing females, likely reflecting the need to protect young. Males showed strong selection for habitat types with high quality forage, possibly due to higher energy requirements. Selection for preferred habitat types providing food and cover was a positive function of their availability within home ranges (i.e. not proportional use) indicating functional response in habitat selection. This relationship was not found for unproductive habitat types. Moreover, home ranges with high cover of unproductive habitat types were larger, and smaller home ranges contained higher proportions of the most preferred habitat type. The distribution of moose within the study area was partly related to the distribution of different habitat types. Our study shows how distribution and availability of habitat types providing cover and high-quality food shape ungulate habitat selection and space use.


Assuntos
Comportamento Animal/fisiologia , Cervos/fisiologia , Ecossistema , Herbivoria , Animais , Demografia , Feminino , Preferências Alimentares , Sistemas de Informação Geográfica , Comportamento de Retorno ao Território Vital , Masculino , Noruega
20.
J Anim Ecol ; 80(2): 466-76, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21105872

RESUMO

1. Animal migration has long intrigued scientists and wildlife managers alike, yet migratory species face increasing challenges because of habitat fragmentation, climate change and over-exploitation. Central to the understanding migratory species is the objective discrimination between migratory and nonmigratory individuals in a given population, quantifying the timing, duration and distance of migration and the ability to predict migratory movements. 2. Here, we propose a uniform statistical framework to (i) separate migration from other movement behaviours, (ii) quantify migration parameters without the need for arbitrary cut-off criteria and (iii) test predictability across individuals, time and space. 3. We first validated our novel approach by simulating data based on established theoretical movement patterns. We then formulated the expected shapes of squared displacement patterns as nonlinear models for a suite of movement behaviours to test the ability of our method to distinguish between migratory movement and other movement types. 4. We then tested our approached empirically using 108 wild Global Positioning System (GPS)-collared moose Alces alces in Scandinavia as a study system because they exhibit a wide range of movement behaviours, including resident, migrating and dispersing individuals, within the same population. Applying our approach showed that 87% and 67% of our Swedish and Norwegian subpopulations, respectively, can be classified as migratory. 5. Using nonlinear mixed effects models for all migratory individuals we showed that the distance, timing and duration of migration differed between the sexes and between years, with additional individual differences accounting for a large part of the variation in the distance of migration but not in the timing or duration. Overall, the model explained most of the variation (92%) and also had high predictive power for the same individuals over time (69%) as well as between study populations (74%). 6. The high predictive ability of the approach suggests that it can help increase our understanding of the drivers of migration and could provide key quantitative information for understanding and managing a broad range of migratory species.


Assuntos
Migração Animal , Cervos/fisiologia , Modelos Biológicos , Animais , Interpretação Estatística de Dados , Movimento , Noruega , Suécia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...