Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Cell Physiol ; 60(3): 575-586, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30476329

RESUMO

Signals and signaling pathways underlying the symbiosis between legumes and rhizobia have been studied extensively over the past decades. In a previous phosphoproteomic study on the Medicago truncatula-Sinorhizobium meliloti symbiosis, we identified plant proteins that are differentially phosphorylated upon the perception of rhizobial signals, called Nod factors. In this study, we provide experimental evidence that one of these proteins, Early Phosphorylated Protein 1 (EPP1), is required for the initiation of this symbiosis. Upon inoculation with rhizobia, MtEPP1 expression was induced in curled root hairs. Down-regulation of MtEPP1 in M. truncatula roots almost abolished calcium spiking, reduced the expression of essential symbiosis-related genes (MtNIN, MtNF-YB1, MtERN1 and MtENOD40) and strongly decreased nodule development. Phylogenetic analyses revealed that orthologs of MtEPP1 are present in legumes and specifically in plant species able to host arbuscular mycorrhizal fungi, suggesting a possible role in this association too. Short chitin oligomers induced the phosphorylation of MtEPP1 like Nod factors. However, the down-regulation of MtEPP1 affected the colonization of M. truncatula roots by arbuscular mycorrhizal fungi only moderately. Altogether, these findings indicate that MtEPP1 is essential for the establishment of the legume-rhizobia symbiosis but might plays a limited role in the arbuscular mycorrhizal symbiosis.


Assuntos
Medicago truncatula/metabolismo , Proteínas de Plantas/metabolismo , Nódulos Radiculares de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Proteínas de Plantas/genética , Nódulos Radiculares de Plantas/genética , Simbiose/genética , Simbiose/fisiologia
2.
PLoS One ; 11(5): e0155460, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27203723

RESUMO

Unlike the major cereal crops corn, rice, and wheat, leguminous plants such as soybean and alfalfa can meet their nitrogen requirement via endosymbiotic associations with soil bacteria. The establishment of this symbiosis is a complex process playing out over several weeks and is facilitated by the exchange of chemical signals between these partners from different kingdoms. Several plant components that are involved in this signaling pathway have been identified, but there is still a great deal of uncertainty regarding the early events in symbiotic signaling, i.e., within the first minutes and hours after the rhizobial signals (Nod factors) are perceived at the plant plasma membrane. The presence of several protein kinases in this pathway suggests a mechanism of signal transduction via posttranslational modification of proteins in which phosphate is added to the hydroxyl groups of serine, threonine and tyrosine amino acid side chains. To monitor the phosphorylation dynamics and complement our previous untargeted 'discovery' approach, we report here the results of experiments using a targeted mass spectrometric technique, Selected Reaction Monitoring (SRM) that enables the quantification of phosphorylation targets with great sensitivity and precision. Using this approach, we confirm a rapid change in the level of phosphorylation in 4 phosphosites of at least 4 plant phosphoproteins that have not been previously characterized. This detailed analysis reveals aspects of the symbiotic signaling mechanism in legumes that, in the long term, will inform efforts to engineer this nitrogen-fixing symbiosis in important non-legume crops such as rice, wheat and corn.


Assuntos
Espectrometria de Massas/métodos , Medicago truncatula/metabolismo , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Fosforilação , Rhizobium/fisiologia , Transdução de Sinais/fisiologia , Simbiose/fisiologia
3.
Anal Chem ; 77(24): 7984-92, 2005 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-16351146

RESUMO

We present a simple, rapid method for detecting short DNA sequences that combines a novel isothermal amplification method (EXPAR) with visual, colorimetric readout based on aggregation of DNA-functionalized gold nanospheres. The reaction is initiated by a trigger oligonucleotide, synthetic in nature for this proof-of-principle study, which is exponentially amplified at 55 degrees C and converted to a universal reporter oligonucleotide capable of bridging two sets of DNA-functionalized gold nanospheres. This reaction provides >10(6)-fold amplification/conversion in under 5 min. When combined with a solution containing DNA nanospheres, the bridging reporter causes nanosphere aggregation. The resulting color change from red to dark purple or blue is enhanced through spotting the solution onto a C18 reversed-phase thin-layer chromatography plate. The reaction can easily be adapted for detection of different trigger oligonucleotides using the same set of DNA nanospheres. It permits detection of as low as 100 fM trigger oligonucleotide in under 10 min total assay time, with minimal reagent consumption and requirement for instrumentation. We expect that combining this simple, versatile assay with trigger generation from a genomic target DNA sequence of interest will be a powerful tool in the development of rapid and simple point-of-care molecular diagnostic applications.


Assuntos
DNA/análise , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos , Sequência de Bases , Cromatografia em Camada Fina/métodos , Colorimetria/métodos , Nanotubos , Hibridização de Ácido Nucleico/métodos , Oligodesoxirribonucleotídeos/química , Sensibilidade e Especificidade , Espectrometria de Massas por Ionização por Electrospray
4.
Proc Natl Acad Sci U S A ; 100(8): 4504-9, 2003 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-12679520

RESUMO

We have devised a class of isothermal reactions for amplifying DNA. These homogeneous reactions rapidly synthesize short oligonucleotides (8-16 bases) specified by the sequence of an amplification template. Versions of the reactions can proceed in either a linear or an exponential amplification mode. Both of these reactions require simple, constant conditions, and the rate of amplification depends entirely on the molecular parameters governing the interactions of the molecules in the reaction. The exponential version of the reaction is a molecular chain reaction that uses the oligonucleotide products of each linear reaction to create producers of more of the same oligonucleotide. It is a highly sensitive chain reaction that can be specifically triggered by given DNA sequences and can achieve amplifications of >10(6)-fold. Several similar reactions in this class are described here. The robustness, speed, and sensitivity of the exponential reaction suggest it will be useful in rapidly detecting the presence of small amounts of a specific DNA sequence in a sample, and a range of other applications, including many currently making use of the PCR.


Assuntos
Técnicas de Amplificação de Ácido Nucleico/métodos , Oligodesoxirribonucleotídeos/síntese química , Oligodesoxirribonucleotídeos/genética , Sequência de Bases , Técnicas de Amplificação de Ácido Nucleico/estatística & dados numéricos , Reação em Cadeia da Polimerase , Sensibilidade e Especificidade , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...