Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(12): e2316723121, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38478686

RESUMO

Many environmental and industrial processes depend on how fluids displace each other in porous materials. However, the flow dynamics that govern this process are still poorly understood, hampered by the lack of methods to measure flows in optically opaque, microscopic geometries. We introduce a 4D microvelocimetry method based on high-resolution X-ray computed tomography with fast imaging rates (up to 4 Hz). We use this to measure flow fields during unsteady-state drainage, injecting a viscous fluid into rock and filter samples. This provides experimental insight into the nonequilibrium energy dynamics of this process. We show that fluid displacements convert surface energy into kinetic energy. The latter corresponds to velocity perturbations in the pore-scale flow field behind the invading fluid front, reaching local velocities more than 40 times faster than the constant pump rate. The characteristic length scale of these perturbations exceeds the characteristic pore size by more than an order of magnitude. These flow field observations suggest that nonlocal dynamic effects may be long-ranged even at low capillary numbers, impacting the local viscous-capillary force balance and the representative elementary volume. Furthermore, the velocity perturbations can enhance unsaturated dispersive mixing and colloid transport and yet, are not accounted for in current models. Overall, this work shows that 4D X-ray velocimetry opens the way to solve long-standing fundamental questions regarding flow and transport in porous materials, underlying models of, e.g., groundwater pollution remediation and subsurface storage of CO2 and hydrogen.

2.
Sci Data ; 8(1): 18, 2021 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-33473137

RESUMO

Solute transport processes are influenced by pore-scale heterogeneity. To study this, transient micron-scale solute concentration fields were imaged by fast laboratory-based X-ray micro-computed tomography. We performed tracer injection experiments in three types of porous material with increasing levels of heterogeneity (sintered glass, Bentheimer sandstone and Savonnières limestone). Different Peclet numbers were used during the experiments. For each sample and Peclet number, datasets of 40 to 74 3D images were acquired by continuous scanning with a voxel size of 13.4 to 14.6 µm and a temporal resolution of 15 to 12 seconds. To determine the measurement uncertainty on the obtained concentration fields, we performed calibration experiments under similar circumstances (temporal resolution of 12 seconds and voxel size of 13.0 µm). Here, we provide a systematic description of the data acquisition and processing and make all data, a total of 464 tomograms, publicly available. The combined dataset offers new opportunities to study the influence of pore-scale heterogeneity on solute transport, and to validate pore-scale simulations of this process in increasingly complex samples.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...