Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 30(44): 99380-99398, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37612559

RESUMO

Ensemble learning techniques have shown promise in improving the accuracy of landslide models by combining multiple models to achieve better predictive performance. In this study, several ensemble methods (Dagging, Bagging, and Decorate) and a radial basis function classifier (RBFC) were combined to predict landslide susceptibility in the Trung Khanh district of the Cao Bang Province, Vietnam. The ensemble models were developed using a geospatial database containing 45 historical landslides (1074 points) and thirteen influencing variables characterizing the topography, geology, land use/cover, and human activities of the study area. The performance of the models was evaluated based on the area under the receiver operating characteristic curve (AUC) and several other performance metrics, including positive predictive value (PPV), negative predictive value (NPV), sensitivity (SST), specificity (SPF), accuracy (ACC), and root mean square error (RMSE). The Bagging-RBFC model with PPV = 86%, NPV = 95%, SST = 95%, SPF = 87%, ACC = 91%, RMSE = 0.297, and AUC = 98% was found to be the most accurate model for the prediction of landslide susceptibility, followed by the Dagging-RBFC, Decorate-RBFC, and single RBFC models. The study demonstrates the efficacy of ensemble learning techniques in developing reliable landslide predictive models, which can ultimately save lives and reduce infrastructure damage in landslide-prone regions worldwide.


Assuntos
Deslizamentos de Terra , Humanos , Bases de Dados Factuais , Geologia , Valor Preditivo dos Testes , Benchmarking
2.
Artigo em Inglês | MEDLINE | ID: mdl-32260438

RESUMO

: The main aim of this study is to assess groundwater potential of the DakNong province, Vietnam, using an advanced ensemble machine learning model (RABANN) that integrates Artificial Neural Networks (ANN) with RealAdaBoost (RAB) ensemble technique. For this study, twelve conditioning factors and wells yield data was used to create the training and testing datasets for the development and validation of the ensemble RABANN model. Area Under the Receiver Operating Characteristic (ROC) curve (AUC) and several statistical performance measures were used to validate and compare performance of the ensemble RABANN model with the single ANN model. Results of the model studies showed that both models performed well in the training phase of assessing groundwater potential (AUC ≥ 0.7), whereas the ensemble model (AUC = 0.776) outperformed the single ANN model (AUC = 0.699) in the validation phase. This demonstrated that the RAB ensemble technique was successful in improving the performance of the single ANN model. By making minor adjustment in the input data, the ensemble developed model can be adapted for groundwater potential mapping of other regions and countries toward more efficient water resource management. The present study would be helpful in improving the groundwater condition of the area thus in solving water borne disease related health problem of the population.


Assuntos
Água Subterrânea , Redes Neurais de Computação , Recursos Hídricos , Aprendizado de Máquina , Curva ROC , Vietnã
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...