Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Bioanal Chem ; 399(3): 1163-72, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21107817

RESUMO

Electrospinning (ES) of polymer solutions generates non-woven webs of nanofibres. The fibre diameter ranges between 10 nm and 1 µm depending on the operating conditions. Surface functionalisation can be performed by the use of suitable additives. Detailed characterisation of the molecular composition at the fibre surface is a key issue. Biodegradable nanowebs with potential antibacterial activity have been prepared by ES of solutions containing polycaprolactone (PCL) and a functionalising additive with PCL segments and hexyldimethylammonium groups (PCLhexaq). Static secondary ion mass spectrometry with Bi(3)(+) projectiles has been applied to individual nanofibres. The positive ion mass spectra contain several signals with high structural specificity allowing the presence of PCLhexaq to be traced back in spite of its low concentration (0.16-1.4% w/w relative to PCL) and its structural similarity to the PCL fibre matrix. Imaging of structural ions visualises the homogeneous distribution of PCLhexaq over the fibre surface. Quantifying the surface concentration of PCLhexaq relative to that of PCL reveals electric field-driven surface enrichment of the additive during ES. Finally, nanofibres subjected to leaching in water for up to 72 h have been analysed. The PCLhexaq surface concentration decreases almost linearly with time at a rate of 0.6% h(-1).


Assuntos
Antibacterianos/química , Nanofibras/química , Poliésteres/química , Estrutura Molecular , Tamanho da Partícula , Espectrometria de Massa de Íon Secundário , Propriedades de Superfície
2.
Rapid Commun Mass Spectrom ; 20(3): 346-52, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16372383

RESUMO

The viability of static secondary ion mass spectrometry (S-SIMS) for selected applications of nanoscale analysis has been investigated, focusing on nanofibres produced by electrospinning (ES) as a test case. The samples consist of non-woven nanowebs of which the individual fibres have diameters in the range of 100 nm. Use of solutions with functionalised polymers or polar additives potentially allows the surface composition to be tailored as a function of the application. So far nanowebs are primarily characterised by morphological examination. This paper describes the first detailed characterisation of molecular composition at the surface of nanofibres electrospun from poly(epsilon-caprolactone) (PCL) solutions in acetone containing 0-15 mol% (relative to PCL) of cetyltrimethylammonium bromide (CTAB). Application of S-SIMS to nanowebs has allowed mass spectra to be recorded containing the major diagnostic ions of both components. Their relative intensities point to surface enrichment and depletion of the polar CTAB additive relative to the PCL matrix for samples electrospun from solution containing low and high CTAB concentrations, respectively.

3.
Rapid Commun Mass Spectrom ; 19(18): 2517-27, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16106345

RESUMO

The application of polyatomic primary ions is a strongly developing branch of static secondary ion mass spectrometry (S-SIMS), since these projectiles allow a significant increase in the secondary ion yields to be achieved. However, the different limitations and possibilities of certain polyatomic primary ions for use on specific functional classes of samples are still not completely known. This paper compares the use of monoatomic and polyatomic primary ions in S-SIMS for thin layers of polylactic acid (PLA), obtained by spin-coating solutions on silicon wafers. Bombardment with Ga+, Xe+ and SF5+ primary ions allowed the contribution of the projectile mass and number of atoms in the gain in ion yield and molecular specificity (relative importance of high m/z and low m/z signals) to be assessed. Samples obtained by spin-coating solutions with increasing concentration showed that optimal layer thickness depended on the primary ion used. In comparison with the use of Ga+ projectiles, the yield of structural ions increased by a factor of about 1.5 to 2 and by about 7 to 12 when Xe+ and SF5+ primary ion bombardment were applied, respectively. A detailed fragmentation pattern was elaborated to interpret ion signal intensity changes for different projectiles in terms of energy deposition and collective processes in the subsurface, and the internal energy of radical and even-electron precursor ions.

4.
Rapid Commun Mass Spectrom ; 19(4): 552-60, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15666315

RESUMO

Static secondary ion mass spectrometry (S-SIMS) emerges as one of the most adequate methods for the surface characterisation of polymers with an information depth of essentially one monolayer. The continuing search for increased analytical sensitivity and specificity has led to exploring the use of polyatomic primary ions as an alternative to the traditionally applied monoatomic projectiles. As part of a systematic investigation on polyatomic bombardment of organic and inorganic solids, this paper focuses on selected polyesters. Mass spectra and ion yields are compared for layers deposited on silicon wafers by spincoating solutions with different concentrations of poly(epsilon-caprolactone) (PCL), poly(butylene adipate) (PBA) and poly(ethylene adipate) (PEA). Accurate mass measurements have been used to support the assignment of the ions and link the composition of the detected ions to the analyte structure. Use of polyatomic projectiles increases the yield of structural ions with a factor of +/-15, +/-30 and +/-10 for PCL, PBA and PEA, respectively, in comparison to bombardment with Ga+ primary ions, while the molecular specificity is improved by the detection of additional high m/z ions.


Assuntos
Íons/química , Poliésteres/química , Espectrometria de Massa de Íon Secundário/instrumentação , Adipatos/química , Polienos/análise , Poliésteres/análise , Polietileno/análise , Espectrometria de Massa de Íon Secundário/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...