Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochem Pharmacol ; 42(11): 2131-9, 1991 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-1958231

RESUMO

In this report, the types of DNA damage introduced by the ortho-quinone and the semiquinone free radical of 4'-demethylepipodophyllotoxin-9-(4-6-O-ethylidene-beta-D- glucopyranoside) (etoposide) and their relevance for the inactivation of single-stranded (ss) and double-stranded (ds) replicative form (RF) phi X174 DNA have been examined in vitro. The ortho-quinone yielded in both ss and ds DNA only chemical adducts, of which on the average about 1 out of 3 and 1 out of 12 per DNA molecule led to inactivation of ss or RF phi X174 DNA, respectively. The semi-quinone free radical, on the other hand, generated both frank and alkali-labile strand-breaks in ss and in ds DNA which, however, did not contribute significantly to DNA inactivation. The radical introduced, in addition, chemical DNA adducts. Unlike the ortho-quinone adducts, however, each of the semi-quinone adducts was lethal in ss phi X174 DNA, while more than 40 were required for the inactivation of RF DNA. The excision repair system of Escherichia coli did not operate on semi-quinone-modified RF DNA but removed about half of the ortho-quinone adducts [van Maanen JMS, Lafleur MVM, Mans DRA, van den Akker E, de Ruiter C, Koostra PR, Pappie D, de Vries J, Retèl J and Pinedo HM, Biochem Pharmacol 37: 3579-3589, 1988]. When ortho-quinone-modified ss or ds DNA was subjected to a post-alkaline treatment, the adducts remained stably bound to the DNA and the degree of biological inactivation was not influenced. In contrast, post-alkaline treatment removed about 70 and 60% of the semi-quinone adducts from ss and ds DNA, respectively, which, in the case of ss phi X174 DNA, resulted in a partial restoration of the biological activity. It is concluded that the ortho-quinone and the semi-quinone free radical of etoposide produce different types of damage in DNA which have different effects on the biological activity.


Assuntos
DNA de Cadeia Simples/metabolismo , DNA/metabolismo , Etoposídeo/metabolismo , DNA/efeitos dos fármacos , Dano ao DNA , DNA de Cadeia Simples/efeitos dos fármacos , DNA Viral/efeitos dos fármacos , DNA Viral/metabolismo , Etoposídeo/efeitos adversos , Radicais Livres/metabolismo , Concentração de Íons de Hidrogênio , Quinonas/metabolismo
2.
Br J Cancer ; 62(1): 54-60, 1990 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-2167725

RESUMO

The mechanism of action of the anti-tumour agent etoposide (VP-16-213) could involve its bioactivation to metabolites which can damage DNA. Active metabolites of etoposide, generated in vitro, are the 3',4'-dihydroxy-derivative (catechol) and its oxidation product, the ortho-quinone. The conversion of the catechol into the ortho-quinone (and vice versa) proceeds via formation of a semi-quinone free radical. We investigated the role of this radical species in the inactivation of biologically active single- (ss) and double-stranded (RF) phi X174 DNA. Since the formation of semi-quinone free radicals from the ortho-quinone of etoposide is pH dependent, experiments were performed, in which the ortho-quinone was incubated at pH 4, 7.4 and greater than or equal to 9. ESR measurements showed no formation of radical species from the ortho-quinone at pH 4, but an increased rate of generation of the primary semi-quinone free radical at pH values 7.4 to 10; at still higher pH values a secondary semi-quinone free radical was produced. HPLC analyses demonstrated chemical stability of the ortho-quinone at pH 4, but an accelerated decay was observed when the pH was elevated from 7.4 to 9, with its concomitant conversion into more polar components and into the catechol of etoposide. Ss phi X174 DNA, exposed to the ortho-quinone, was inactivated at an increasing rate at pH values increasing from 4 to 7.4 and subsequently to 9. RF phi X174 DNA was only significantly inactivated in incubations with the ortho-quinone at pH 4, not at pH values 7.4 and 9. From these data it is concluded that the primary semi-quinone free radical of etoposide may to a great extent be responsible for the ortho-quinone-induced ss phi X174 DNA inactivation, but that this radical species is not lethal towards RF phi X174 DNA.


Assuntos
Bacteriófago phi X 174/efeitos dos fármacos , Dano ao DNA , DNA Viral/efeitos dos fármacos , Etoposídeo/farmacologia , Cromatografia Líquida de Alta Pressão , Espectroscopia de Ressonância de Spin Eletrônica , Etoposídeo/metabolismo , Radicais Livres , Concentração de Íons de Hidrogênio , Técnicas In Vitro
3.
Free Radic Res Commun ; 9(2): 69-86, 1990.
Artigo em Inglês | MEDLINE | ID: mdl-2161389

RESUMO

We have studied the effects of oxygen radical scavengers on the inactivation of ss phi X174 DNA by the semi-quinone free radical of the antitumor agent etoposide (VP 16-213), which was generated from the ortho-quinone of etoposide at pH greater than or equal to 7.4. A semi-quinone free radical of etoposide is thought to play a role in the inactivation of ss phi X174 DNA by its precursors 3',4'-ortho-quinone and 3',4'-ortho-dihydroxy-derivative. The possible role of oxygen radicals formed secondary to semi-quinone formation in the inactivation of DNA by the semi-quinone free radical was investigated using the hydroxyl radical scavengers t-butanol and DMSO, the spin trap DMPO, the enzymes catalase and superoxide dismutase, the iron chelator EDTA and potassium superoxide. Hydroxyl radicals seem not important in the process of inactivation of DNA by the semi-quinone free radical, since t-butanol, DMSO, catalase and EDTA had no inhibitory effect on DNA inactivation. The spin trapping agent DMPO strongly inhibited DNA inactivation and semi-quinone formation from the ortho-quinone of etoposide at pH greater than or equal to 7.4 with the concomitant formation of a DMPO-OH adduct. This adduct probably did not arise from OH. trapping but from trapping of O2-(.). DMSO increased both the semi-quinone formation from and the DNA inactivation by the ortho-quinone of etoposide at pH greater than or equal to 7.4. Potassium superoxide also stimulated phi X174 DNA inactivation by the ortho-quinone at pH less than or equal to 7. From the present study, it is also concluded that superoxide anion radicals probably play an important role in the formation of the semi-quinone free radical from the ortho-quinone of etoposide, thus indirectly influencing DNA inactivation.


Assuntos
Bacteriófago phi X 174/genética , Benzoquinonas , DNA de Cadeia Simples/efeitos dos fármacos , DNA Viral/efeitos dos fármacos , Etoposídeo/farmacologia , Quinonas/farmacologia , Butanóis/farmacologia , Catalase/farmacologia , Cromatografia Líquida de Alta Pressão , Óxidos N-Cíclicos/farmacologia , Dimetil Sulfóxido/farmacologia , Ácido Edético/farmacologia , Espectroscopia de Ressonância de Spin Eletrônica , Radicais Livres , Concentração de Íons de Hidrogênio , Superóxido Dismutase/farmacologia , Superóxidos/metabolismo , Superóxidos/farmacologia , terc-Butil Álcool
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...