Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Sports Med ; 26(10): 854-8, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16320170

RESUMO

Cyclists often use heart rate limits or power output zones, obtained from lactate parameters during incremental exercise testing, to control training intensity. However, the relationship between heart rate or power output, and blood lactate can be changed by several factors including dehydration. Therefore, in the current study we investigated the impact of exercise-induced dehydration on lactate parameters during graded exercise. Nine triathletes completed two test sessions in random order, with a 1-week interval. Each session consisted of 2 graded cycling tests to exhaustion (pretest, posttest), interspersed by a 2-h endurance exercise bout. In one session the cyclists received adequate fluid replacement (EH, 1350 ml . h (-1)) whilst in the other session dehydration was not prevented (DH, 225 ml . h (-1)). Subjects received equal amounts of carbohydrates (150 g) during either condition. The 4-mmol lactate threshold (OBLA) and the d (max) lactate threshold (TH-Dm) were calculated from the power : lactate curves. Weight loss was 0.5 +/- 0.3 kg in EH versus 2.5 +/- 0.2 kg in DH (p < 0.05). Heart rate (HR) at TH-Dm remained unchanged in all test occasions. Conversely, HR at OBLA increased by approximately 10 beats . min (-1) from the pretest to the posttest (p < 0.05), in both EH and DH. Compared to the pretest, in the posttest power output at TH-Dm was reduced (minus approximately 12 %, p < 0.05) in DH, but not in EH. Gross mechanical efficiency at TH-Dm was 20.7 +/- 1 % in the pretest in EH and was not different from the pretest value in DH (21.4 +/- 0.7 %, n.s.). Gross efficiency decreased in the posttest in DH (18.4 +/- 0.6 %, p < 0.05), but not in EH (20.2 +/- 0.8 %, n.s.). It is concluded that heart rate rather than power output should be used to monitor training load in cyclists exercising in environmental conditions predisposing to dehydration. Furthermore, in the latter condition, adequate rehydration is essential to preserve optimal mechanical efficiency.


Assuntos
Desidratação/fisiopatologia , Exercício Físico/fisiologia , Ácido Láctico/sangue , Resistência Física/fisiologia , Adulto , Desidratação/prevenção & controle , Carboidratos da Dieta/administração & dosagem , Eletrólitos/administração & dosagem , Teste de Esforço , Hidratação , Frequência Cardíaca/fisiologia , Humanos , Masculino , Consumo de Oxigênio/fisiologia , Polissacarídeos/administração & dosagem , Troca Gasosa Pulmonar/fisiologia , Sudorese/fisiologia , Redução de Peso/fisiologia
2.
Int J Sports Med ; 25(6): 403-8, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15346226

RESUMO

We investigated the validity of different lactate and ventilatory threshold methods, to estimate heart rate and power output corresponding with the maximal lactate steady-state (MLSS) in elite cyclists. Elite cyclists (n = 21; 21 +/- 0.4 y; VO2peak, 5.4 +/- 0.2 l x min (-1)) performed either one (n = 10) or two (n = 11) maximal graded exercise tests, as well as two to three 30-min constant-load tests to determine MLSS, on their personal race bicycle which was mounted on an ergometer. Initial workload for the graded tests was 100 Watt and was increased by either 5 % of body mass (in Watt) with every 30 s (T30 s), or 60 % of body mass (in Watt) with every 6 min (T6min). MLSS was defined as the highest constant workload during which lactate increased no more than 1 mmol x l (-1) from min 10 to 30. In T30 s and T6 min the 4 mmol (TH-La4), the Conconi (TH-Con) and dmax (TH-Dm) lactate threshold were determined. The dmax lactate threshold was defined as the point that yields the maximal distance from the lactate curve to the line formed by the lowest and highest lactate values of the curve. In T30 s also ventilatory (TH-Ve) and Vslope (TH-Vs) thresholds were calculated. Time to exhaustion was 36 +/- 1 min for T30 s versus 39 +/- 1 min for T6 min. None of the threshold measures in T30 s, except TH-Vs (r2 = 0.77 for heart rate) correlated with either MLSS heart rate or power output. During T6 min, power output at TH-Dm was closely correlated with MLSS power (r2=0.72). Low correlations were found between MLSS heart rate and heart rate measured at TH-Dm (r2=0.46) and TH-La4 (r2=0.25), respectively, during T6 min. It is concluded that it is not possible to precisely predict heart rate or power output corresponding with MLSS in elite cyclists, from a single graded exercise test causing exhaustion within 35-40 min. The validity of MLSS predicted from an incremental test must be verified by a 30-min constant-load test.


Assuntos
Limiar Anaeróbio/fisiologia , Ciclismo/fisiologia , Exercício Físico/fisiologia , Ácido Láctico/sangue , Adulto , Ergometria , Teste de Esforço , Humanos , Carga de Trabalho
3.
Eur J Appl Physiol ; 92(3): 263-6, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15083366

RESUMO

The impact of air ventilation on performance and physiological responses during stationary exercise in the laboratory was studied. Fourteen well-trained cyclists performed three exercise tests on a cycle ergometer, each separated by a 1-week interval. The first test was a graded test to determine the power output corresponding with the 4-mmol l(-1) lactate level. Tests 2 and 3 were 30-min constant-load tests at a power output corresponding with this 4-mmol l(-1) lactate threshold. One constant-load test was performed in the absence (NAV), whilst the other was performed in the presence (AV) of air ventilation (3 m s(-1)). During the constant-load tests, heart rate, tympanic temperature, blood lactate concentration and oxygen uptake (VO2) were measured at 10-min intervals and at the end of the test. Differences between the two test conditions were evaluated using paired t-tests. During NAV, 12 subjects interrupted the test due to premature exhaustion (exercise duration <30 min), versus only seven in AV ( P<0.05). At the end of the test tympanic temperature was 35.9 (0.2) degrees C in AV and was higher in NAV [36.7 (0.2) degrees C, P<0.05]. Exercise heart rate increased at a faster rate during NAV [+2.2 (0.3) beats min(-1)] than during AV [+1.5 (0.2) beats min(-1), P<0.05]. Blood lactate concentration and VO2 were similar between conditions. Air ventilation is essential to prevent an upward shift in the lactate:heart rate as well as the power output:heart rate relationship during laboratory exercise testing and indoor exercise training.


Assuntos
Transferência de Energia/fisiologia , Teste de Esforço/métodos , Exercício Físico/fisiologia , Esforço Físico/fisiologia , Ventilação/métodos , Adaptação Fisiológica/fisiologia , Adolescente , Adulto , Movimentos do Ar , Regulação da Temperatura Corporal/fisiologia , Frequência Cardíaca/fisiologia , Humanos , Ácido Láctico/sangue , Consumo de Oxigênio/fisiologia , Análise e Desempenho de Tarefas
4.
Eur J Appl Physiol ; 91(1): 94-9, 2004 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-12955517

RESUMO

This study investigated whether sprint triathlon performance can be adequately predicted from laboratory tests. Ten triathletes [mean (SEM), age 21.8 (0.3) years, height 179 (2) cm, body mass 67.5 (2.5) kg] performed two graded maximal exercise test in random order, either on their own bicycle which was mounted on an ergometer or on a treadmill, to determine their peak oxygen consumption ( VO(2)peak). Furthermore, they participated in two to three 30-min constant-load tests in both swimming, cycling and running to establish their maximal lactate steady state (MLSS) in each exercise mode. Swim tests were performed in a 25-m swimming pool (water temperature 27 degrees C). During each test heart rate (HR), power output (PO) or running/swimming speed and blood lactate concentration (BLC) were recorded at regular intervals. Oxygen uptake ( VO(2)) was continuously measured during the graded tests. Two weeks after the laboratory tests all subjects competed in a triathlon race (500 m swim, 20-km bike, 5-km run) [1 h 4 min 45 s (1 min 38 s)]. Peak HR was 7 beats.min(-1) lower in the graded cycle test than in the treadmill test ( p<0.05) at similar peak BLC (approximately 10 mmol.l(-1)) and VO(2)peak (approximately 5 L.min(-1)). High correlations were found between VO(2)peak during cycling ( r=-0.71, p<0.05) or running ( r=-0.69, p<0.05) and triathlon performance. Stepwise multiple regression analysis showed that running speed and swimming speed at MLSS, together with BLC in running at MLSS, yielded the best prediction of performance [1 h 5 min 18 s (1 min 49 s)]. Thus, our data indicate that exercise tests aimed to determine MLSS in running and swimming allow for a precise estimation of sprint triathlon performance.


Assuntos
Ciclismo/fisiologia , Exercício Físico/fisiologia , Corrida/fisiologia , Natação/fisiologia , Adulto , Técnicas de Laboratório Clínico , Teste de Esforço/métodos , Previsões , Frequência Cardíaca/fisiologia , Humanos , Ácido Láctico/sangue , Masculino , Consumo de Oxigênio/fisiologia , Análise e Desempenho de Tarefas
5.
Int J Sports Med ; 24(2): 144-50, 2003 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-12669262

RESUMO

A double-blind study was performed to evaluate the effects of oral creatine-pyruvate administration on exercise performance in well-trained cyclists. Endurance and intermittent sprint performance were evaluated before (pretest) and after (posttest) one week of creatine-pyruvate intake (Cr(pyr), 2 x 3.5 g x d-1, n = 7) or placebo (PL, n = 7). Subjects first performed a 1-hour time trial during which the workload could be adjusted at 5-min intervals. Immediately they did five 10-sec sprints interspersed by 2-min rest intervals. Tests were performed on an individual race bicycle that was mounted on an ergometer. Steady-state power production on average was about 235-245 W, which corresponded to blood lactate concentrations of 4-5 mmol x l -1 and heart rate in the range of 160-170 beats x min -1. Power outputs as well as blood lactate levels and heart rates were similar between Cr(pyr) and PL at all times. Total work performed during the 1-h trial was 872 +/- 44 KJ in PL versus 891 +/- 51 KJ in CR pyr. During the intermittent sprint test power peaked at about 800-1000 watt within 2-3 sec, decreasing by 15-20 % towards the end of each sprint. Peak and mean power outputs were similar between groups at all times. Peak lactate concentrations after the final sprint were approximately 11 mmol x l -1 in both groups during both the pretest and the posttest. It is concluded that one week of creatine-pyruvate supplementation at a rate of 7 g x d -1 does not beneficially impact on either endurance capacity or intermittent sprint performance in cyclists.


Assuntos
Ciclismo/fisiologia , Creatina/farmacologia , Suplementos Nutricionais , Ácido Pirúvico/farmacologia , Análise e Desempenho de Tarefas , Método Duplo-Cego , Teste de Esforço , Humanos , Ácido Láctico/sangue , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...