Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Oncol Lett ; 18(3): 2684-2693, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31404303

RESUMO

Endometrial cancer is the most common gynaecological cancer worldwide, and the prognosis of patients with advanced disease remains poor. MicroRNAs (miRs) are dysregulated in endometrial cancer. miRs-29-a, -b and -c expression levels are downregulated in endometrial cancer; however, a specific role for miR-29c and its target genes remain to be elucidated. The aim of the present study was to determine the functional effect of restoring miR-29c expression in endometrial cancer cell lines and to identify miR-29c targets involved in cancer progression. miR-29c expression in human endometrial tumour grades 1-3 and benign tissue as well as in the endometrial cancer cell lines Ishikawa, HEC1A and AN3CA were analysed using reverse transcriptase-quantitative PCR (RT-qPCR). The cell lines were transfected with miR-29c mimic, miR-29c inhibitor or scrambled control. xCELLigence real-time cell monitoring analysed proliferation and migration, and flow cytometry was used to analyse apoptosis and cell cycle. The expression of miR-29c target genes in transfected cell lines was analysed using RT-qPCR. miR-29c was downregulated in grade 1-3 endometrial cancer samples compared with benign endometrium. miR-29c was reduced in Ishikawa and AN3CA cells, but not in HEC1A cell lines compared with non-cancerous primary human endometrial epithelial cells. Overexpression of miR-29c variably reduced proliferation, increased apoptosis and reduced the expression levels of miR-29c target genes, including cell division cycle 42, HMG-box transcription factor 1, integrin subunit ß 1, MCL1 apoptosis regulator BCL2 family member, MDM2 proto-oncogene, serum/glucocorticoid regulated kinase 1, sirtuin 1 and vascular endothelial growth factor A, across the three cell lines investigated. Inhibition of miR-29c in HEC1A cells increased proliferation and collagen type IV α 1 chain expression. The re-introduction of miR-29c to endometrial cancer cell lines reduced proliferation, increased apoptosis and reduced miR-29c target gene expression in vitro. The present results suggested that miR-29c may be a potential therapeutic target for endometrial cancer.

2.
Sci Rep ; 9(1): 8644, 2019 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-31201347

RESUMO

The endometrium is a highly complex tissue that is vulnerable to subtle gene expression changes and is the first point of contact for an implanting blastocyst. Successful blastocyst implantation can only occur when the endometrium is receptive during a short window with each menstrual cycle. microRNAs are small, non-coding RNAs that negatively regulate their gene targets. miR-29c has previously been identified to be differentially regulated across the fertile menstrual cycle, however it has not been investigated in association with infertility. We hypothesised that miR-29c dysregulation in the infertile endometrium would negatively influence endometrial adhesion and blastocyst implantation outcomes during the mid-secretory, receptive phase. miR-29c expression was elevated in early and mid-secretory phase infertile endometrium and localised to the epithelial compartments of endometrial tissue. Overexpression of miR-29c in vitro impaired endometrial epithelial adhesion, and reduced collagen type IV alpha 1 (COL4A1) mRNA expression. COL4A1 was immunolocalised to the luminal and glandular epithelial basement membranes in early and mid-secretory phase fertile and infertile endometrium for the first time. Knockdown of COL4A1 impaired endometrial epithelial adhesion suggesting a role in endometrial receptivity and implantation. Our data suggests miR-29c overexpression with infertility may impair the adhesive capacity of the endometrium, potentially contributing to implantation failure and infertility.


Assuntos
Colágeno Tipo IV/metabolismo , Regulação para Baixo/genética , Endométrio/patologia , Células Epiteliais/patologia , Infertilidade Feminina/genética , MicroRNAs/metabolismo , Membrana Basal/patologia , Estudos de Casos e Controles , Adesão Celular/genética , Colágeno Tipo IV/genética , Células Epiteliais/metabolismo , Feminino , Humanos , MicroRNAs/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Trofoblastos/patologia
3.
Oncol Lett ; 16(4): 4721-4728, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30250540

RESUMO

Endometrial cancer (EC) is the most commonly diagnosed gynecological malignancy in Australian women. Notably, its incidence and mortality rate is increasing. Despite this, there are limited treatment options for EC. Galectin-7 regulates tumorigenesis in numerous epithelial cancer types, but the role of galectin-7 has not been investigated in EC. It was hypothesized that galectin-7 expression would be altered in EC and contribute to the development of EC. Galectin-7 levels in EC and benign endometrium were quantified by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and ELISA. The effect of recombinant galectin-7 (1 µg/ml) on cell adhesion, proliferation, apoptosis (xCELLigence and flow cytometry), migration (wound healing assay) and gene expression (RT-qPCR) was investigated using three human EC cell lines (Ishikawa, HEC1A and AN3CA). Galectin-7 gene and protein expression was significantly elevated in Grade 3 EC, compared with benign tissues. Galectin-7 was almost undetectable in Ishikawa and AN3CA cells, but highly expressed by HEC1A cells. Recombinant galectin-7 had no significant effect on cell proliferation or apoptosis in any cell line, but significantly reduced cell adhesion in Ishikawa (at 4 and 6 h) and AN3CA (at 2, 3, 4 and 6 h). Galectin-7 significantly promoted Ishikawa migration and significantly elevated collagen type IV α 1 chain and intercellular adhesion molecule 1 (ICAM1) gene expression during wound healing. The present study demonstrated that galectin-7 production increased in EC with increasing cancer grade; therefore, galectin-7 may promote the metastasis of EC by reducing cell-cell adhesion and enhancing cell migration.

4.
Reprod Biomed Online ; 36(3): 250-258, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29361454

RESUMO

Interleukin (IL)11 is a crucial regulator during the initiation of pregnancy in humans and mice. Elevated levels are detected in serum, placenta and decidua of women with pre-eclampsia. Elevated IL11 during placentation recapitulates pre-eclampsia in mice, although withdrawal rescues pre-eclampsia features, suggesting that IL11 could provide a novel therapeutic target. The aim of this study was to determine the safety profile of an IL11 antagonist ligated to polyethylene glycol (PEGIL11A) during pregnancy in mice. Blocking IL11 signalling during mid to late gestation pregnancy in mice did not affect pregnancy viability, or alter placental or fetal weight, or morphology. Importantly, decidual area remained unchanged. PEGIL11A did not affect maternal blood pressure, urinary protein or term pup weight. PEGIL11A administration to non-pregnant mice did not affect subsequent fertility; there was no difference in number of implantation sites, or placental or fetal weight between PEGIL11A and PEG-treated mice. These data show that blocking IL11Rα during placentation does not alter the placenta, decidua, fetus, maternal blood pressure or kidneys. These findings highlight the potential of IL11 signalling inhibition as a safe therapy to alleviate pre-eclampsia symptoms and demonstrate the potential for IL11 inhibition as a novel fertility-preserving therapy for women with cancer.


Assuntos
Pressão Sanguínea/efeitos dos fármacos , Fertilidade/efeitos dos fármacos , Interleucina-11/antagonistas & inibidores , Placentação/efeitos dos fármacos , Polietilenoglicóis/química , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Gravidez , Resultado da Gravidez , Transdução de Sinais
5.
Reprod Fertil Dev ; 30(3): 477-486, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28847363

RESUMO

Human blastocysts that fail to implant following IVF secrete elevated levels of miR-661, which is taken up by primary human endometrial epithelial cells (HEECs) and impairs their adhesive capability. MicroRNA miR-661 downregulates mouse double minute homologue 2 (MDM2) and MDM4 in other epithelial cell types to activate p53; however, this has not been examined in the endometrium. In this study MDM2 protein was detected in the luminal epithelium of the endometrium, the site of blastocyst attachment, during the mid secretory receptive phase of the menstrual cycle. The effects of miR-661 on gene expression in and adhesion of endometrial cells was also examined. MiR-661 overexpression consistently downregulated MDM2 but not MDM4 or p53 gene expression in the Ishikawa endometrial epithelial cell line and primary HEEC. Adhesion assays were performed on the real-time monitoring xCELLigence system and by co-culture using Ishikawa cells and HEECs with HTR8/SVneo trophoblast spheroids. Targeted siRNA-mediated knockdown of MDM2 in endometrial epithelial cells reduced Ishikawa cell adhesion (P<0.001) and also reduced HTR8/SVneo trophoblast spheroid adhesion to Ishikawa cells (P<0.05) and HEECs (P<0.05). MDM2 overexpression using recombinant protein treatment resulted in enhanced HTR8/SVneo trophoblast spheroid adhesion to Ishikawa cells (P<0.01) and HEECs (P<0.05). This study highlights a potential new mechanism by which human blastocyst-secreted miR-661 reduces endometrial epithelial cell adhesion; via downregulation of MDM2. These findings suggest that MDM2 contributes to endometrial-blastocyst adhesion, implantation and infertility in women.


Assuntos
Blastocisto/metabolismo , Adesão Celular , Implantação do Embrião , Endométrio/metabolismo , Células Epiteliais/metabolismo , MicroRNAs/metabolismo , Comunicação Parácrina , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteínas de Ciclo Celular , Linhagem Celular , Técnicas de Cocultura , Regulação para Baixo , Feminino , Humanos , Fator Inibidor de Leucemia/genética , Fator Inibidor de Leucemia/metabolismo , MicroRNAs/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Gravidez , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/genética , Transdução de Sinais , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
6.
Oncotarget ; 8(14): 22716-22729, 2017 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-28186993

RESUMO

High grade type I endometrial cancers have poor prognosis. Interleukin (IL)11 is elevated in tumours and uterine lavage with increasing tumour grade in women. IL11 regulates cell cycle, invasion and migration and we recently demonstrated that IL11 receptor (R)α inhibition impaired low and moderate grade endometrial tumourigenesis in vivo. In this report, we hypothesized that micro-RNA(miR)-1 regulates IL11 and that IL11 promotes high grade endometrial tumour growth. We aimed to determine whether combination treatment using an anti-human IL11Rα blocking antibody (Ab) and doxorubicin chemotherapeutic impairs high grade tumour growth. MiR-1 was absent in human endometrial tumours versus human benign endometrium (n = 10/group). Transfection with miR-1 mimic restored miR-1 expression, down-regulated IL11 mRNA and impaired cell viability in grade 3-derived AN3CA human endometrial epithelial cancer cells. AN3CA cell proliferation was reduced in response to Ab and doxorubicin combination treatment versus Ab, IgG control, or doxorubicin alone. Subcutaneous xenograft tumours were established in female Balb/c athymic nude mice using AN3CA cells expressing IL11 and IL11Rα. Administration of recombinant human IL11 to mice (n = 4/group) activated IL11 downstream target, signal transducers and activators of transcription (STAT3) and significantly increased tumour growth (p < 0.05), suggesting that IL11 promotes high grade tumour growth. IL11Rα blocking Ab reduced STAT3 phosphorylation and combination treatment with doxorubicin resulted in a significant reduction in tumour growth (p < 0.05) compared to Ab, doxorubicin, or IgG control. Our data suggest that therapeutically targeting IL11Rα in combination with doxorubicin chemotherapy could inhibit high grade type I endometrioid cancer growth.


Assuntos
Doxorrubicina/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Neoplasias do Endométrio/tratamento farmacológico , Subunidade alfa de Receptor de Interleucina-11/antagonistas & inibidores , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Antibióticos Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Biomarcadores Tumorais/metabolismo , Proliferação de Células/efeitos dos fármacos , Neoplasias do Endométrio/metabolismo , Neoplasias do Endométrio/patologia , Feminino , Seguimentos , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Pessoa de Meia-Idade , Gradação de Tumores , Fosforilação/efeitos dos fármacos , Prognóstico , Transdução de Sinais/efeitos dos fármacos , Taxa de Sobrevida , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Int J Oncol ; 50(3): 798-804, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28098860

RESUMO

Endometrial cancer is the most common gynecological cancer. We identified interleukin 11 (IL11) as a critical mediator of endometrial tumourigenesis and demonstrated that IL11 regulates chondroitin sulfate proteoglycan (CSPG4) in human placental trophoblasts. CSPG4 is a cell membrane protein overexpressed in numerous human cancers, although its role in endometrial cancer has not been investigated. We examined CSPG4 expression and localization in primary human type I endometrioid grade (G) 1-3 tumours by qPCR and immunohistochemistry and determined whether IL11 stimulated CSPG4. IL11 upregulated CSPG4 mRNA in HEC1A (G2-derived endometrial epithelial cancer cell line) cells. IL11 administration to BALB/c nude mice enhanced HEC1A xenograft tumour growth and increased CSPG4 protein in tumours. CSPG4 mRNA was unchanged between human G1-3 endometrial cancer and control tissues. CSPG4 protein levels were elevated in the epithelium of G2 and G3 endometrial cancer and in the tumour-associated stroma of G3 tumour tissues compared to proliferative phase or post-menopausal endometrium. CSPG4 knockdown by siRNA reduced HEC1A proliferation and migration in vitro and reduced gene expression of the key epithelial-to-mesenchymal transition (EMT) regulator SNAIL. Our data suggest that CSPG4 inhibition may impair endometrial cancer progression by reducing cancer cell proliferation, migration and potentially EMT.


Assuntos
Proteoglicanas de Sulfatos de Condroitina/metabolismo , Neoplasias do Endométrio/patologia , Endométrio/patologia , Transição Epitelial-Mesenquimal/genética , Interleucina-11/metabolismo , Proteínas de Membrana/metabolismo , Animais , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Proteoglicanas de Sulfatos de Condroitina/genética , Endométrio/citologia , Feminino , Humanos , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Transplante de Neoplasias , Interferência de RNA , RNA Mensageiro/biossíntese , RNA Interferente Pequeno/genética , Fatores de Transcrição da Família Snail/genética , Fatores de Transcrição da Família Snail/metabolismo , Transplante Heterólogo
8.
J Steroid Biochem Mol Biol ; 170: 39-48, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-27353462

RESUMO

We investigated the effects of estrogens on glucose homeostasis using the Aromatase Knockout (ArKO) mouse, which is unable to convert androgens into estrogens. The ArKO mouse is a model of total estrogen ablation which develops symptoms of metabolic syndrome. To determine the development and progression of whole body state of insulin resistance of ArKO mice, comprehensive whole body tolerance tests were performed on WT, ArKO and estrogen administrated mice at 3 and 12 months of age. The absence of estrogens in the male ArKO mice leads to hepatic insulin resistance, glucose and pyruvate intolerance from 3 to 12 months with consistent improvement upon estrogen treatment. Estrogen absence in the female ArKO mice leads to glucose intolerance without pyruvate intolerance or insulin resistance. The replacement of estrogens in the female WT and ArKO mice exhibited both insulin sensitizing and resistance effects depending on age and dosage. In conclusion, this study presents information on the sexually dimorphic roles of estrogens on glucose homeostasis regulation.


Assuntos
Aromatase/deficiência , Aromatase/genética , Estrogênios/metabolismo , Glucose/metabolismo , Homeostase , Animais , Aromatase/metabolismo , Índice de Massa Corporal , Feminino , Teste de Tolerância a Glucose , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Caracteres Sexuais
9.
Reprod Fertil Dev ; 29(4): 694-702, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26616664

RESUMO

The endometrium undergoes substantial morphological and functional changes to become receptive to embryo implantation and to enable establishment of a successful pregnancy. Reduced Delta-like ligand 1 (DLL1, Notch ligand) in the endometrium is associated with infertility. DLL1 can be cleaved by 'a disintegrin and metalloprotease' (ADAM) proteases to produce a soluble ligand that may act to inhibit Notch signalling. We used an enzyme-linked immunosorbent assay to quantify soluble DLL1 in uterine lavages from fertile and infertile women in the secretory phase of the menstrual cycle. We also determined the cellular location and immunostaining intensity of ADAM12 and 17 in human endometrium throughout the cycle. Functional effects of soluble DLL1 in receptivity were analysed using in vitro adhesion and proliferation assays and gene expression analysis of Notch signalling targets. Soluble DLL1 was significantly increased in uterine lavage samples of infertile women compared with fertile women in the secretory phase of the menstrual cycle. This coincided with significantly increased ADAM17 immunostaining detected in the endometrial luminal epithelium in the mid-secretory phase in infertile women. Soluble DLL1 significantly inhibited the adhesive capacity of endometrial epithelial cells via downregulation of helix-loop-helix and hairy/enhancer of split family member HES1 mRNA. Thus, soluble DLL1 may serve as a suitable target or potential biomarker for receptivity.


Assuntos
Adesão Celular/fisiologia , Proliferação de Células/fisiologia , Endométrio/metabolismo , Células Epiteliais/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteínas de Membrana/metabolismo , Proteína ADAM17/metabolismo , Adulto , Proteínas de Ligação ao Cálcio , Feminino , Fertilidade/fisiologia , Humanos , Infertilidade Feminina/metabolismo , Ciclo Menstrual/metabolismo
10.
Mol Cancer Ther ; 15(4): 720-30, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-26846819

RESUMO

Endometrial cancer contributes to significant morbidity and mortality in women with advanced stage or recurrent disease. IL11 is a cytokine that regulates cell cycle, invasion, and migration, all hallmarks of cancer. IL11 is elevated in endometrial tumors and uterine lavage fluid in women with endometrial cancer, and alters endometrial epithelial cancer cell adhesion and migration in vitro, but its role in endometrial tumorigenesis in vivo is unknown. We injected mice subcutaneously with human-derived Ishikawa or HEC1A endometrial epithelial cancer cells (ectopic), or HEC1A cells into the uterus (orthotopic) to develop endometrial cancer mouse models. Administration of anti-human IL11 receptor (R) α blocking antibody dramatically reduced HEC1A-derived tumor growth in both models and reduced peritoneal metastatic lesion spread in the orthotopic model, compared with IgG. Anti-human IL11Rα retained a well-differentiated, endometrial epithelial phenotype in the HEC1A ectopic mice, suggesting it prevented epithelial-to-mesenchymal transition. Blockade of mouse IL11Rα with anti-mouse IL11Rα antibody did not alter tumor growth, suggesting that cancer epithelial cell IL11 signaling is required for tumor progression. In vitro, anti-human IL11Rα antibody significantly reduced Ishikawa and HEC1A cell proliferation and invasion and promoted apoptosis. Anti-human, but not anti-mouse, IL11Rα antibody reduced STAT3, but not ERK, activation in HEC1A cells in vitro and in endometrial tumors in xenograft mice. We demonstrated that targeted blockade of endometrial cancer epithelial cell IL11 signaling reduced primary tumor growth and impaired metastasis in ectopic and orthotopic endometrial cancer models in vivo Our data suggest that therapeutically targeting IL11Rα could inhibit endometrial cancer growth and dissemination. Mol Cancer Ther; 15(4); 720-30. ©2016 AACR.


Assuntos
Neoplasias do Endométrio/metabolismo , Neoplasias do Endométrio/patologia , Subunidade alfa de Receptor de Interleucina-11/metabolismo , Animais , Anticorpos Monoclonais/farmacologia , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Neoplasias do Endométrio/tratamento farmacológico , Feminino , Humanos , Interleucina-11/metabolismo , Interleucina-11/farmacologia , Subunidade alfa de Receptor de Interleucina-11/antagonistas & inibidores , Subunidade alfa de Receptor de Interleucina-11/genética , Interleucina-6/metabolismo , Camundongos , Modelos Biológicos , Terapia de Alvo Molecular , Metástase Neoplásica , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Reprod Fertil Dev ; 28(4): 395-405, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25151993

RESUMO

During placental development and carcinogenesis, cell invasion and migration are critical events in establishing a self-supporting vascular supply. Interleukin (IL)-11 is a pleiotropic cytokine that affects the invasive and migratory capabilities of trophoblast cells that form the placenta during pregnancy, as well as various malignant cell types. The endometrium is the site of embryo implantation during pregnancy; conversely, endometrial carcinoma is the most common gynaecological malignancy. Here, we review what is known about the role of IL-11 in trophoblast function and in gynaecological malignancies, focusing primarily on the context of the uterine environment.


Assuntos
Implantação do Embrião , Endométrio/metabolismo , Neoplasias dos Genitais Femininos/metabolismo , Interleucina-11/metabolismo , Placenta/metabolismo , Placentação , Reprodução , Animais , Movimento Celular , Feminino , Neoplasias dos Genitais Femininos/patologia , Humanos , Invasividade Neoplásica , Gravidez , Transdução de Sinais
12.
Proc Natl Acad Sci U S A ; 112(52): 15928-33, 2015 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-26655736

RESUMO

Preeclampsia (PE) is a pregnancy-specific disorder characterized by hypertension and proteinuria after 20 wk gestation. Abnormal extravillous trophoblast (EVT) invasion and remodeling of uterine spiral arterioles is thought to contribute to PE development. Interleukin-11 (IL11) impedes human EVT invasion in vitro and is elevated in PE decidua in women. We demonstrate that IL11 administered to mice causes development of PE features. Immunohistochemistry shows IL11 compromises trophoblast invasion, spiral artery remodeling, and placentation, leading to increased systolic blood pressure (SBP), proteinuria, and intrauterine growth restriction, although nonpregnant mice were unaffected. Real-time PCR array analysis identified pregnancy-associated plasma protein A2 (PAPPA2), associated with PE in women, as an IL11 regulated target. IL11 increased PAPPA2 serum and placental tissue levels in mice. In vitro, IL11 compromised primary human EVT invasion, whereas siRNA knockdown of PAPPA2 alleviated the effect. Genes regulating uterine natural killer (uNK) recruitment and differentiation were down-regulated and uNK cells were reduced after IL11 treatment in mice. IL11 withdrawal in mice at onset of PE features reduced SBP and proteinuria to control levels and alleviated placental labyrinth defects. In women, placental IL11 immunostaining levels increased in PE pregnancies and in serum collected from women before development of early-onset PE, shown by ELISA. These results indicate that elevated IL11 levels result in physiological changes at the maternal-fetal interface, contribute to abnormal placentation, and lead to the development of PE. Targeting placental IL11 may provide a new treatment option for PE.


Assuntos
Interleucina-11/metabolismo , Placenta/metabolismo , Placentação/fisiologia , Pré-Eclâmpsia/metabolismo , Animais , Western Blotting , Decídua/efeitos dos fármacos , Decídua/metabolismo , Ensaio de Imunoadsorção Enzimática , Feminino , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Humanos , Imuno-Histoquímica , Interleucina-11/genética , Interleucina-11/farmacologia , Masculino , Camundongos Endogâmicos C57BL , Placenta/efeitos dos fármacos , Placentação/efeitos dos fármacos , Placentação/genética , Pré-Eclâmpsia/genética , Gravidez , Proteína Plasmática A Associada à Gravidez/genética , Proteína Plasmática A Associada à Gravidez/metabolismo , Interferência de RNA , Receptores de Interleucina-11/genética , Receptores de Interleucina-11/metabolismo , Proteínas Recombinantes/farmacologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa
13.
EBioMedicine ; 2(10): 1528-35, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26629549

RESUMO

Successful embryo implantation requires synchronous development and communication between the blastocyst and the endometrium, however the mechanisms of communication in humans are virtually unknown. Recent studies have revealed that microRNAs (miRs) are present in bodily fluids and secreted by cells in culture. We have identified that human blastocysts differentially secrete miRs in a pattern associated with their implantation outcome. miR-661 was the most highly expressed miR in blastocyst culture media (BCM) from blastocysts that failed to implant (non-implanted) compared to blastocysts that implanted (implanted). Our results indicate a possible role for Argonaute 1 in the transport of miR-661 in non-implanted BCM and taken up by primary human endometrial epithelial cells (HEECs). miR-661 uptake by HEEC reduced trophoblast cell line spheroid attachment to HEEC via PVRL1. Our results suggest that human blastocysts alter the endometrial epithelial adhesion, the initiating event of implantation, via the secretion of miR, abnormalities in which result in implantation failure.


Assuntos
Blastocisto/metabolismo , Endométrio/citologia , Endométrio/metabolismo , Células Epiteliais/metabolismo , MicroRNAs/genética , Proteínas Argonautas/metabolismo , Adesão Celular/genética , Moléculas de Adesão Celular/genética , Linhagem Celular , Implantação do Embrião/genética , Fatores de Iniciação em Eucariotos/metabolismo , Feminino , Fertilização in vitro , Histona Desacetilases/genética , Humanos , MicroRNAs/química , Nectinas , Interferência de RNA , Transporte de RNA , Proteínas Repressoras/genética
14.
PLoS One ; 10(8): e0136143, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26317527

RESUMO

The maintenance of glucose homeostasis within the body is crucial for constant and precise performance of energy balance and is sustained by a number of peripheral organs. Estrogens are known to play a role in the maintenance of glucose homeostasis. Aromatase knockout (ArKO) mice are estrogen-deficient and display symptoms of dysregulated glucose metabolism. We aim to investigate the effects of estrogen ablation and exogenous estrogen administration on glucose homeostasis regulation. Six month-old female wildtype, ArKO, and 17ß-estradiol (E2) treated ArKO mice were subjected to whole body tolerance tests, serum examination of estrogen, glucose and insulin, ex-vivo muscle glucose uptake, and insulin signaling pathway analyses. Female ArKO mice display increased body weight, gonadal (omental) adiposity, hyperinsulinemia, and liver triglycerides, which were ameliorated upon estrogen treatment. Tolerance tests revealed that estrogen-deficient ArKO mice were pyruvate intolerant hence reflecting dysregulated hepatic gluconeogenesis. Analyses of skeletal muscle, liver, and adipose tissues supported a hepatic-based glucose dysregulation, with a down-regulation of Akt phosphorylation (a key insulin signaling pathway molecule) in the ArKO liver, which was improved with E2 treatment. Concurrently, estrogen treatment lowered ArKO serum leptin and adiponectin levels and increased inflammatory adipokines such as tumour necrosis factor alpha (TNFα) and interleukin 6 (IL6). Furthermore, estrogen deficiency resulted in the infiltration of CD45 macrophages into gonadal adipose tissues, which cannot be reversed by E2 treatment. This study describes the effects of estrogens on glucose homeostasis in female ArKO mice and highlights a primary phenotype of hepatic glucose dysregulation and a parallel estrogen modified adipokine profile.


Assuntos
Adipocinas/sangue , Aromatase/genética , Estradiol/sangue , Estrogênios/sangue , Gluconeogênese , Glucose/metabolismo , Homeostase/efeitos dos fármacos , Tecido Adiposo/metabolismo , Animais , Estradiol/farmacologia , Estrogênios/farmacologia , Feminino , Interleucina-6/sangue , Leptina/sangue , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/metabolismo , Triglicerídeos/metabolismo , Fator de Necrose Tumoral alfa/sangue
15.
J Mol Histol ; 45(6): 697-706, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25034535

RESUMO

To investigate the spatial and temporal immunolocalisation and staining intensity of the Notch signalling family in endometrium of fertile and infertile women, endometrial biopsies were collected by curettage from 25 fertile women across the menstrual cycle and 10 infertile women in the mid secretory phase of menstrual cycle. Immunohisotchemistry was completed for NOTCH1, -2, -3, -4, cleaved Notch, DLL1, -3, -4, JAGGED1, -2, HES and NUMB and immunostaining intensity measured in both the endometrial glandular and luminal epithelium. NOTCH1 and the ligands DLL1 and JAGGED1 were key proteins displaying increased staining intensity during the receptive phase of the menstrual cycle and dysregulated in infertile endometrium. Conversely, NUMB a negative regulator of Notch signalling was decreased in the mid secretory phase of the menstrual cycle in fertile women and increased with infertility.


Assuntos
Endométrio/metabolismo , Infertilidade Feminina/metabolismo , Receptores Notch/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Estudos de Casos e Controles , Endométrio/patologia , Feminino , Humanos , Infertilidade Feminina/patologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteína Jagged-1 , Proteína Jagged-2 , Proteínas de Membrana/metabolismo , Transporte Proteico , Proteínas Serrate-Jagged , Transdução de Sinais
16.
PLoS One ; 9(2): e87230, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24520329

RESUMO

Estrogens are known to play a role in modulating metabolic processes within the body. The Aromatase knockout (ArKO) mice have been shown to harbor factors of Metabolic syndrome with central adiposity, hyperinsulinemia and male-specific hepatic steatosis. To determine the effects of estrogen ablation and subsequent replacement in males on whole body glucose metabolism, three- and six-month-old male ArKO mice were subjected to whole body glucose, insulin and pyruvate tolerance tests and analyzed for ensuing metabolic changes in liver, adipose tissue, and skeletal muscle. Estrogen-deficient male ArKO mice showed increased gonadal adiposity which was significantly reduced upon 17ß-estradiol (E2) treatment. Concurrently, elevated ArKO serum leptin levels were significantly reduced upon E2 treatment and lowered serum adiponectin levels were restored to wild type levels. Three-month-old male ArKO mice were hyperglycemic, and both glucose and pyruvate intolerant. These phenotypes continued through to 6 months of age, highlighting a loss of glycemic control. ArKO livers displayed changes in gluconeogenic enzyme expression, and in insulin signaling pathways upon E2 treatment. Liver triglycerides were increased in the ArKO males only after 6 months of age, which could be reversed by E2 treatment. No differences were observed in insulin-stimulated ex vivo muscle glucose uptake nor changes in ArKO adipose tissue and muscle insulin signaling pathways. Therefore, we conclude that male ArKO mice develop hepatic glucose intolerance by the age of 3 months which precedes the sex-specific development of hepatic steatosis. This can be reversed upon the administration of exogenous E2.


Assuntos
Aromatase/deficiência , Aromatase/metabolismo , Intolerância à Glucose/enzimologia , Fígado/metabolismo , Fígado/patologia , Adiponectina/sangue , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/patologia , Animais , Glicemia/metabolismo , Peso Corporal/efeitos dos fármacos , Estrogênios/farmacologia , Gluconeogênese/efeitos dos fármacos , Gluconeogênese/genética , Intolerância à Glucose/sangue , Intolerância à Glucose/patologia , Insulina/sangue , Resistência à Insulina , Leptina/sangue , Fígado/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculos/metabolismo , Tamanho do Órgão/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Ácido Pirúvico/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Triglicerídeos/metabolismo
17.
Reproduction ; 147(3): R75-86, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24357662

RESUMO

The establishment of a successful pregnancy requires the implantation of a competent blastocyst into a 'receptive' endometrium, facilitating the formation of a functional placenta. Inadequate or inappropriate implantation and placentation is a major reason for infertility and is thought to lead to first-trimester miscarriage, placental insufficiency and other obstetric complications. Blastocyst-endometrial interactions are critical for implantation and placental formation. The Notch signalling family is a receptor-ligand family that regulates cellular processes as diverse as proliferation, apoptosis, differentiation, invasion and adhesion. Notch signalling is achieved via cell-cell interaction; thus, via Notch, cells can have direct effects on the fate of their neighbours. Recently, a number of studies have identified Notch receptors and ligands in the endometrium, blastocyst and placenta. This review collates current knowledge of this large receptor-ligand family and explores the role of Notch signalling during implantation and placentation, drawing on information from both human and animal studies. Overall, the evidence suggests that Notch signalling is a critical component of fetal-maternal communication during implantation and placentation and that abnormal Notch expression is associated with impaired placentation and pre-eclampsia.


Assuntos
Implantação do Embrião/genética , Troca Materno-Fetal/genética , Receptores Notch/fisiologia , Animais , Endométrio/fisiologia , Feminino , Humanos , Placenta/metabolismo , Placentação/genética , Gravidez , Transdução de Sinais/genética
18.
Hum Reprod ; 28(5): 1172-80, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23434834

RESUMO

STUDY QUESTION: What is the nature of cellular Corin expression in human gestational tissues? SUMMARY ANSWER: CORIN is expressed in non-pregnant late secretory phase endometrium, first trimester human implantation sites and is up-regulated with decidualization ex vivo. WHAT IS KNOWN ALREADY: Adequate trophoblast invasion and spiral artery remodeling/transformation is critical for successful implantation. CORIN, best known for its role in activating atrial natruietic peptide (ANP) to regulate blood pressure, has recently been proposed to be centrally involved in trophoblast invasion and spiral artery remodeling. It is postulated that ANP, activated by CORIN, promotes trophoblast invasion and that a deficiency causes pre-eclampsia. Mice deficient in either Corin or ANP displayed poor trophoblast invasion, impaired spiral artery remodeling and phenocopied human pre-eclampsia. However, the precise cellular localization of CORIN within human gestational tissues has not been well characterized. STUDY DESIGN, SIZE, DURATION: We measured CORIN protein localization in a number of human gestational tissues relevant to early embryo/placental implantation: non-pregnant (NP) endometrial biopsies (n = 5 per phase of the menstrual cycle), first trimester placental bed biopsies (n = 12) and pre-term control (n = 10) and severe early onset preeclamptic placentas (n = 15). Endometrial stromal cells were isolated from human endometrial biopsies (n = 5) and induced to decidualize ex vivo. Finally, CORIN concentrations were measured in serum obtained from pregnant women during the first trimester of whom, 56 subsequently ended up with a healthy term delivery (controls), 18 developed fetal growth restriction (FGR) and 21 had a miscarriage. PARTICIPANTS/MATERIALS, SETTING, METHODS: We performed immunohistochemistry to assess CORIN localization. Changes in Corin mRNA expression in human endometrial stromal cells decidualized ex vivo were measured by quantitative RT-PCR, and levels of CORIN within human sera were measured by ELISA. MAIN RESULTS AND THE ROLE OF CHANCE: CORIN was expressed in both NP late secretory phase endometrium and first trimester decidua within placental bed biopsies. Importantly, decidualization of primary human endometrial cells ex vivo significantly increased Corin expression (P < 0.05). CORIN was also detected within the villous cytotrophoblast, but there was no change in mRNA levels in placentas complicated by severe preterm pre-eclampsia when compared with pre-term controls. Although CORIN was detected in first trimester serum, levels did not change across gestation, nor could they predict miscarriage or FGR (other disorders of impaired placental invasion). LIMITATIONS, REASONS FOR CAUTION: Owing to the fact that we utilized early pregnancy human specimens, this is mainly a descriptive study with a limited amount of functional experiments. WIDER IMPLICATIONS OF THE FINDINGS: This is the first study to thoroughly characterize Corin mRNA and protein expression in human gestational tissue. Our findings support recent data from murine studies collectively suggesting that CORIN plays a critical role in trophoblast migration and spiral artery remodeling during early pregnancy in humans. Therefore, further studies of CORIN biology in early pregnancy may identify new therapeutic targets to improve implantation quality in early pregnancy and potentially reduce the rates of pregnancy complications caused by inadequate implantation (pre-eclampsia, FGR and miscarriage). STUDY FUNDING/COMPETING INTEREST(S): This study was supported by The National Health and Medical Research Council of Australia (Salary support #490970, #490995). The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript. The authors declare that no competing interests exist.


Assuntos
Decídua/metabolismo , Endométrio/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Serina Endopeptidases/metabolismo , Aborto Espontâneo/genética , Adulto , Artérias/patologia , Biópsia , Decídua/patologia , Endométrio/patologia , Ensaio de Imunoadsorção Enzimática , Feminino , Retardo do Crescimento Fetal/genética , Perfilação da Expressão Gênica , Humanos , Imuno-Histoquímica , Placenta/metabolismo , Placenta/patologia , Pré-Eclâmpsia/metabolismo , Gravidez , Resultado da Gravidez , Primeiro Trimestre da Gravidez , Trofoblastos/citologia , Adulto Jovem
19.
Am J Reprod Immunol ; 69(5): 427-40, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23176081

RESUMO

Immune factors such as cytokines, chemokines, and growth factors are known to play important roles in the preimplantation interactions and communication between the blastocyst and receptive endometrium. This crucial dialog occurs during the stages when the blastocyst is in the uterine cavity immediately preceding implantation and the establishment of pregnancy. Human preimplantation processes are difficult to study due to restrictions on tissue availability. This review focuses on the expression and role of immune factors in human blastocyst-endometrial dialog during the very early stages of implantation. It highlights the importance of immune regulators and the need to develop new models to study human implantation.


Assuntos
Blastocisto/imunologia , Comunicação Celular , Endométrio/imunologia , Mediadores da Inflamação/imunologia , Animais , Feminino , Humanos , Imunomodulação , Gravidez
20.
Protein Cell ; 2(4): 333-46, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21574023

RESUMO

Estrogen is implicated as playing an important role in aging and tumorigenesis of estrogen responsive tissues; however the mechanisms underlying the mitogenic actions of estrogen are not fully understood. Here we report that estrogen deficiency in mice caused by targeted disruption of the aromatase gene results in a significant inhibition of telomerase maintenance of telomeres in mouse ovaries in a tissue-specific manner. The inhibition entails a significant shortening of telomeres and compromised proliferation in the follicular granulosa cell compartment of ovary. Gene expression analysis showed decreased levels of proto-oncogene c-Myc and the telomerase catalytic subunit, telomerase reverse transcriptase (TERT), in response to estrogen deficiency. Estrogen replacement therapy led to increases in TERT gene expression, telomerase activity, telomere length and ovarian tissue growth, thereby reinstating ovary development to normal in four weeks. Our data demonstrate for the first time that telomere maintenance is the primary mechanism mediating the mitogenic effect of estrogen on ovarian granulosa cell proliferation by upregulating the genes of c-Myc and TERT in vivo. Estrogen deficiency or over-activity may cause ovarian tissue aging or tumorigenesis, respectively, through estrogen regulation of telomere remodeling.


Assuntos
Transtornos 46, XX do Desenvolvimento Sexual/genética , Envelhecimento/genética , Aromatase/genética , Estrogênios , Células da Granulosa/metabolismo , Ginecomastia/genética , Infertilidade Masculina/genética , Erros Inatos do Metabolismo/genética , Telomerase/metabolismo , Telômero/química , Transtornos 46, XX do Desenvolvimento Sexual/tratamento farmacológico , Transtornos 46, XX do Desenvolvimento Sexual/metabolismo , Envelhecimento/metabolismo , Animais , Aromatase/deficiência , Aromatase/metabolismo , Proliferação de Células/efeitos dos fármacos , Terapia de Reposição de Estrogênios , Estrogênios/deficiência , Estrogênios/farmacologia , Feminino , Expressão Gênica , Genes myc/genética , Células da Granulosa/efeitos dos fármacos , Células da Granulosa/patologia , Ginecomastia/tratamento farmacológico , Ginecomastia/metabolismo , Humanos , Infertilidade Masculina/tratamento farmacológico , Infertilidade Masculina/metabolismo , Erros Inatos do Metabolismo/tratamento farmacológico , Erros Inatos do Metabolismo/metabolismo , Camundongos , Camundongos Knockout , Proto-Oncogene Mas , Telomerase/genética , Telômero/metabolismo , Telômero/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...