Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Heart Circ Physiol ; 320(2): H838-H853, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33416451

RESUMO

Although sodium glucose cotransporter 1 (SGLT1) has been identified as one of the major SGLT isoforms expressed in the heart, its exact role remains elusive. Evidence using phlorizin, the most common inhibitor of SGLTs, has suggested its role in glucose transport. However, phlorizin could also affect classical facilitated diffusion via glucose transporters (GLUTs), bringing into question the relevance of SGLT1 in overall cardiac glucose uptake. Accordingly, we assessed the contribution of SGLT1 in cardiac glucose uptake using the SGLT1 knockout mouse model, which lacks exon 1. Glucose uptake was similar in cardiomyocytes isolated from SGLT1-knockout (Δex1KO) and control littermate (WT) mice either under basal state, insulin, or hyperglycemia. Similarly, in vivo basal and insulin-stimulated cardiac glucose transport measured by micro-PET scan technology did not differ between WT and Δex1KO mice. Micromolar concentrations of phlorizin had no impact on glucose uptake in either isolated WT or Δex1KO-derived cardiomyocytes. However, higher concentrations (1 mM) completely inhibited insulin-stimulated glucose transport without affecting insulin signaling nor GLUT4 translocation independently from cardiomyocyte genotype. Interestingly, we discovered that mouse and human hearts expressed a shorter slc5a1 transcript, leading to SGLT1 protein lacking transmembrane domains and residues involved in glucose and sodium bindings. In conclusion, cardiac SGLT1 does not contribute to overall glucose uptake, probably due to the expression of slc5a1 transcript variant. The inhibitory effect of phlorizin on cardiac glucose uptake is SGLT1-independent and can be explained by GLUT transporter inhibition. These data open new perspectives in understanding the role of SGLT1 in the heart.NEW & NOTEWORTHY Ever since the discovery of its expression in the heart, SGLT1 has been considered as similar as the intestine and a potential contributor to cardiac glucose transport. For the first time, we have demonstrated that a slc5a1 transcript variant is present in the heart that has no significant impact on cardiac glucose handling.


Assuntos
Glucose/metabolismo , Miócitos Cardíacos/metabolismo , Transportador 1 de Glucose-Sódio/metabolismo , Animais , Transporte Biológico , Células Cultivadas , Transportador de Glucose Tipo 4/antagonistas & inibidores , Transportador de Glucose Tipo 4/metabolismo , Hipoglicemiantes/farmacologia , Insulina/farmacologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Florizina/farmacologia , Isoformas de Proteínas , Ratos Wistar , Transportador 1 de Glucose-Sódio/antagonistas & inibidores , Transportador 1 de Glucose-Sódio/genética
2.
Arch Cardiovasc Dis ; 113(11): 736-748, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33189592

RESUMO

Besides coronary artery disease, which remains the main cause of heart failure in patients with diabetes, factors independent of coronary artery disease are involved in the development of heart failure in the onset of what is called diabetic cardiomyopathy. Among them, hyperglycaemia - a hallmark of type 2 diabetes - has both acute and chronic deleterious effects on myocardial function, and clearly participates in the establishment of diabetic cardiomyopathy. In the present review, we summarize the cellular and tissular events that occur in a heart exposed to hyperglycaemia, and depict the complex molecular mechanisms proposed to be involved in glucotoxicity. Finally, from a more translational perspective, different therapeutic strategies targeting hyperglycaemia-mediated molecular mechanisms will be detailed.


Assuntos
Glicemia/metabolismo , Diabetes Mellitus/sangue , Cardiomiopatias Diabéticas/sangue , Insuficiência Cardíaca/sangue , Hiperglicemia/sangue , Miocárdio/metabolismo , Animais , Glicemia/efeitos dos fármacos , Diabetes Mellitus/tratamento farmacológico , Diabetes Mellitus/epidemiologia , Cardiomiopatias Diabéticas/epidemiologia , Cardiomiopatias Diabéticas/fisiopatologia , Cardiomiopatias Diabéticas/prevenção & controle , Insuficiência Cardíaca/epidemiologia , Insuficiência Cardíaca/fisiopatologia , Insuficiência Cardíaca/prevenção & controle , Humanos , Hiperglicemia/tratamento farmacológico , Hiperglicemia/epidemiologia , Hipoglicemiantes/uso terapêutico , Miocárdio/patologia , Fatores de Risco , Transdução de Sinais
3.
Sci Rep ; 7: 41166, 2017 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-28128227

RESUMO

Hyperglycemia (HG) stimulates the production of reactive oxygen species in the heart through activation of NADPH oxidase 2 (NOX2). This production is independent of glucose metabolism but requires sodium/glucose cotransporters (SGLT). Seven SGLT isoforms (SGLT1 to 6 and sodium-myoinositol cotransporter-1, SMIT1) are known, although their expression and function in the heart remain elusive. We investigated these 7 isoforms and found that only SGLT1 and SMIT1 were expressed in mouse, rat and human hearts. In cardiomyocytes, galactose (transported through SGLT1) did not activate NOX2. Accordingly, SGLT1 deficiency did not prevent HG-induced NOX2 activation, ruling it out in the cellular response to HG. In contrast, myo-inositol (transported through SMIT1) reproduced the toxic effects of HG. SMIT1 overexpression exacerbated glucotoxicity and sensitized cardiomyocytes to HG, whereas its deletion prevented HG-induced NOX2 activation. In conclusion, our results show that heart SMIT1 senses HG and triggers NOX2 activation. This could participate in the redox signaling in hyperglycemic heart and contribute to the pathophysiology of diabetic cardiomyopathy.


Assuntos
Proteínas de Choque Térmico/metabolismo , Hiperglicemia/metabolismo , Miocárdio/metabolismo , NADPH Oxidase 2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Simportadores/metabolismo , Animais , Modelos Animais de Doenças , Técnicas de Inativação de Genes , Proteínas de Choque Térmico/genética , Humanos , Masculino , Camundongos , Ratos , Transportador 1 de Glucose-Sódio , Simportadores/genética
4.
Am J Physiol Heart Circ Physiol ; 307(8): H1120-33, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-25128166

RESUMO

Exposure of cardiomyocytes to high glucose concentrations (HG) stimulates reactive oxygen species (ROS) production by NADPH oxidase (NOX2). NOX2 activation is triggered by enhanced glucose transport through a sodium-glucose cotransporter (SGLT) but not by a stimulation of glucose metabolism. The aim of this work was to identify potential therapeutic approaches to counteract this glucotoxicity. In cultured adult rat cardiomyocytes incubated with 21 mM glucose (HG), AMP-activated protein kinase (AMPK) activation by A769662 or phenformin nearly suppressed ROS production. Interestingly, glucagon-like peptide 1 (GLP-1), a new antidiabetic drug, concomitantly induced AMPK activation and prevented the HG-mediated ROS production (maximal effect at 100 nM). α2-AMPK, the major isoform expressed in cardiomyocytes (but not α1-AMPK), was activated in response to GLP-1. Anti-ROS properties of AMPK activators were not related to changes in glucose uptake or glycolysis. Using in situ proximity ligation assay, we demonstrated that AMPK activation prevented the HG-induced p47phox translocation to caveolae, whatever the AMPK activators used. NOX2 activation by either α-methyl-d-glucopyranoside, a glucose analog transported through SGLT, or angiotensin II was also counteracted by GLP-1. The crucial role of AMPK in limiting HG-mediated NOX2 activation was demonstrated by overexpressing a constitutively active form of α2-AMPK using adenoviral infection. This overexpression prevented NOX2 activation in response to HG, whereas GLP-1 lost its protective action in α2-AMPK-deficient mouse cardiomyocytes. Under HG, the GLP-1/AMPK pathway inhibited PKC-ß2 phosphorylation, a key element mediating p47phox translocation. In conclusion, GLP-1 induces α2-AMPK activation and blocks HG-induced p47phox translocation to the plasma membrane, thereby preventing glucotoxicity.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Peptídeo 1 Semelhante ao Glucagon/farmacologia , Glucose/farmacologia , Hipoglicemiantes/farmacologia , Miócitos Cardíacos/metabolismo , NADPH Oxidases/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Animais , Compostos de Bifenilo , Células Cultivadas , Masculino , Glicoproteínas de Membrana/metabolismo , Metilglucosídeos/farmacologia , Miócitos Cardíacos/efeitos dos fármacos , NADPH Oxidase 2 , NADPH Oxidases/genética , Fenformin/farmacologia , Proteína Quinase C/metabolismo , Transporte Proteico , Pironas/farmacologia , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Tiofenos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...