Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Aquat Anim Health ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622805

RESUMO

OBJECTIVE: We sought to evaluate accurate and reproducible detection of Myxobolus cerebralis (Mc), the causative agent of whirling disease, by using nested polymerase chain reaction (nPCR) and three previously established real-time quantitative PCR (qPCR) assays: K18S (Kelley 18S), C18S (Cavender 18S), and Hsp70 (heat shock protein 70). We used a "fit for purpose" approach combined with intra- and interlaboratory testing to identify a molecular testing method that would be equivalent to the currently accepted nPCR procedure for Mc. METHODS: Assay performance was compared using a combination of intra- and interlaboratory testing that used synthetic gBlocks along with naturally and experimentally infected fish tissue. North American isolates representing geographically distinct locations were also tested using all three assays. RESULT: The K18S and C18S assays exhibited high assay sensitivity, intra- and interlaboratory repeatability of sample replicates, and reproducible identification of all test samples across multiple laboratories. In contrast, the Hsp70 assay failed to detect several positive samples at low DNA concentrations during intra- and interlaboratory testing. The K18S assay was the only procedure that demonstrated perfect detection accuracy when testing geographically distinct Mc isolates. Results demonstrated the K18S assay is robust under variable test conditions, is more accurate than the C18S and Hsp70 assays, and provides detection capabilities equivalent to those of the currently accepted nPCR confirmation assay "gold standard" that is described in the American Fisheries Society-Fish Health Section (AFS-FHS) Blue Book. CONCLUSION: The "fit for purpose" approach and preliminary completion of the World Organization for Animal Health validation pathway demonstrate that the K18S assay provides an alternate method for Mc testing. This work provides the foundation for acceptance of the K18S assay into the AFS-FHS Blue Book as a standardized test procedure for Mc.

2.
Appl Environ Microbiol ; 85(6)2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30658978

RESUMO

Flavobacterium psychrophilum, the etiological agent of bacterial coldwater disease (BCWD) and rainbow trout fry syndrome (RTFS), causes significant economic losses in salmonid aquaculture, particularly in rainbow trout (Oncorhynchus mykiss). Prior studies have used multilocus sequence typing (MLST) to examine genetic heterogeneity within F. psychrophilum At present, however, its population structure in North America is incompletely understood, as only 107 isolates have been genotyped. Herein, MLST was used to investigate the genetic diversity of an additional 314 North American F. psychrophilum isolates that were recovered from ten fish host species from 20 U.S. states and 1 Canadian province over nearly four decades. These isolates were placed into 66 sequence types (STs), 47 of which were novel, increasing the number of clonal complexes (CCs) in North America from 7 to 12. Newly identified CCs were diverse in terms of host association, distribution, and association with disease. The largest F. psychrophilum CC identified was CC-ST10, within which 10 novel genotypes were discovered, most of which came from O. mykiss experiencing BCWD. This discovery, among others, provides evidence for the hypothesis that ST10 (i.e., the founding ST of CC-ST10) originated in North America. Furthermore, ST275 (in CC-ST10) was recovered from wild/feral adult steelhead and marks the first recovery of CC-ST10 from wild/feral fish in North America. Analyses also revealed that at the allele level, the diversification of F. psychrophilum in North America is driven three times more frequently by recombination than random nucleic acid mutation, possibly indicating how new phenotypes emerge within this species.IMPORTANCEFlavobacterium psychrophilum is the causative agent of bacterial coldwater disease (BCWD) and rainbow trout fry syndrome (RTFS), both of which cause substantial losses in farmed fish populations worldwide. To better prevent and control BCWD and RTFS outbreaks, we sought to characterize the genetic diversity of several hundred F. psychrophilum isolates that were recovered from diseased fish across North America. Results highlighted multiple F. psychrophilum genetic strains that appear to play an important role in disease events in North American aquaculture facilities and suggest that the practice of trading fish eggs has led to the continental and transcontinental spread of this bacterium. The knowledge generated herein will be invaluable toward guiding the development of future disease prevention techniques.


Assuntos
Doenças dos Peixes/microbiologia , Infecções por Flavobacteriaceae/veterinária , Flavobacterium/isolamento & purificação , Animais , Aquicultura , Canadá/epidemiologia , Doenças dos Peixes/epidemiologia , Infecções por Flavobacteriaceae/epidemiologia , Infecções por Flavobacteriaceae/microbiologia , Flavobacterium/classificação , Flavobacterium/genética , Genótipo , Tipagem de Sequências Multilocus , Oncorhynchus mykiss/microbiologia , Filogenia
3.
Microb Drug Resist ; 23(6): 791-798, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28068184

RESUMO

Flavobacterium psychrophilum is a serious pathogen of salmonids worldwide, a matter that is compounded by the lack of effective vaccine preparations. As a result, biosecurity measures and antimicrobial agents remain the only available methods to control diseases caused by F. psychrophilum. It is feared that antimicrobial use may have led to the development of F. psychrophilum strains with reduced susceptibility. Therefore, the primary objective of this study was to determine the antimicrobial susceptibility profiles of 50 F. psychrophilum isolates from Michigan in response to 10 antimicrobial compounds. As recommended by the Clinical and Laboratory Standard Institute and the World Organization of Animal Health, a standardized microdilution broth assay was employed to determine the minimum inhibitory concentrations (MICs) for ampicillin (AMP), gentamicin (GEN), enrofloxacin (ENRO), oxolinic acid (OXO), flumequine (FLUQ), trimethoprim-sulphamethoxazole (SXT), ormetoprim-sulphadimethoxine (PRI), erythromycin (ERY), florfenicol (FFN), and oxytetracycline (OXY). Epidemiological cutoff values were calculated using the normalized resistance interpretation (CONRI) and the ECOFFinder analysis methods (COECOFF). The MIC distributions in response to OXY exhibited bimodality, indicating the presence of isolates with reduced susceptibility in addition to the wild-type isolates. The OXY epidemiological cutoff values (COECOFF <0.06 µg/ml; CONRI <0.12 µg/ml) demonstrated that 24% of Michigan isolates exhibited reduced susceptibility to this commonly used drug. No other antimicrobial exhibited a bimodal distribution of MICs. This study represents the first antimicrobial susceptibility assessment of F. psychrophilum strains recovered from Michigan and contributes valuable data to the worldwide validation efforts to determine universal epidemiological cutoff values of this deadly fish pathogen.


Assuntos
Anti-Infecciosos/farmacologia , Flavobacterium/efeitos dos fármacos , Lagos/microbiologia , Animais , Farmacorresistência Bacteriana/efeitos dos fármacos , Peixes/microbiologia , Michigan , Testes de Sensibilidade Microbiana/métodos
4.
Appl Environ Microbiol ; 82(11): 3246-3255, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27016570

RESUMO

UNLABELLED: The use of a multilocus sequence typing (MLST) technique has identified the intraspecific genetic diversity of U.S. Flavobacterium psychrophilum, an important pathogen of salmonids worldwide. Prior to this analysis, little U.S. F. psychrophilum genetic information was known; this is of importance when considering targeted control strategies, including vaccine development. Herein, MLST was used to investigate the genetic diversity of 96 F. psychrophilum isolates recovered from rainbow trout (Oncorhynchus mykiss), coho salmon (Oncorhynchus kisutch), and Chinook salmon (Oncorhynchus tshawytscha) that originated from nine U.S. states. The isolates fell into 34 distinct sequence types (STs) that clustered in 5 clonal complexes (CCs) (n = 63) or were singletons (n = 33). The distribution of STs varied spatially, by host species, and in association with mortality events. Several STs (i.e., ST9, ST10, ST30, and ST78) were found in multiple states, whereas the remaining STs were localized to single states. With the exception of ST256, which was recovered from rainbow trout and Chinook salmon, all STs were found to infect a single host species. Isolates that were collected during bacterial cold water disease outbreaks most frequently belonged to CC-ST10 (e.g., ST10 and ST78). Collectively, the results of this study clearly demonstrate the genetic diversity of F. psychrophilum within the United States and identify STs of clinical significance. Although the majority of STs described herein were novel, some (e.g., ST9, ST10, ST13, ST30, and ST31) were previously recovered on other continents, which demonstrates the transcontinental distribution of F. psychrophilum genotypes. IMPORTANCE: Flavobacterium psychrophilum is the causative agent of bacterial cold water disease (BCWD) and rainbow trout fry syndrome (RTFS) and is an important bacterial pathogen of wild and farmed salmonids worldwide. These infections are responsible for large economic losses globally, yet the genetic diversity of this pathogen remains to be fully investigated. Previous studies have identified the genetic diversity of this pathogen in other main aquaculture regions; however, little effort has been focused on the United States. In this context, this study aims to examine the genetic diversity of F. psychrophilum from the United States, as this region remains important in salmonid aquaculture.


Assuntos
Flavobacterium/classificação , Flavobacterium/isolamento & purificação , Variação Genética , Tipagem de Sequências Multilocus , Oncorhynchus kisutch/microbiologia , Oncorhynchus mykiss/microbiologia , Salmão/microbiologia , Animais , Análise por Conglomerados , Flavobacterium/genética , Genótipo , Filogeografia , Estados Unidos
5.
J Aquat Anim Health ; 27(4): 192-202, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26636411

RESUMO

Bacterial coldwater disease (BCWD), caused by Flavobacterium psychrophilum, threatens wild and propagated salmonids worldwide and leads to substantial economic losses. In addition to being horizontally transmitted, F. psychrophilum can be passed from infected parents to their progeny, furthering the negative impacts of this pathogen. In Michigan, both feral and captive salmonid broodstocks are the gamete sources used in fishery propagation efforts. A 5-year study was initiated to follow the prevalence of systemic F. psychrophilum infections in feral broodstocks of four species (steelhead Oncorhynchus mykiss [potadromous Rainbow Trout]; Coho Salmon O. kisutch; Chinook Salmon O. tshawytscha; and Atlantic Salmon Salmo salar) residing in three Great Lakes watersheds. Additionally, captive broodstocks of four species (Rainbow Trout, Brown Trout Salmo trutta, Lake Trout Salvelinus namaycush, and Brook Trout Salvelinus fontinalis) maintained at two facilities were assessed for the presence of F. psychrophilum. The resultant offspring from each broodstock population were sampled for F. psychrophilum infections multiple times throughout hatchery residency. Using selective flavobacterial culture and PCR confirmation, F. psychrophilum was detected in all broodstocks except the captive Lake Trout and Brook Trout. Logistic regression analysis demonstrated that among the infected feral broodstocks, Chinook Salmon from the Lake Michigan watershed had the highest prevalence of systemic F. psychrophilum infection (mean = 63.2%). Among the captive broodstocks, the Gilchrist Creek strain of Brown Trout had the highest infection prevalence (mean = 5%). Collectively, the captive broodstocks were found to have significantly lower infection prevalence than the feral broodstocks. Despite the high prevalence of systemic F. psychrophilum infections in many broodstock populations, the bacterium was rarely detected in their progeny during hatchery rearing. However, heavy losses associated with clinical BCWD outbreaks did occur. Collectively, our results reinforce that BCWD continues to threaten Great Lakes basin salmonids.


Assuntos
Doenças dos Peixes/microbiologia , Infecções por Flavobacteriaceae/veterinária , Flavobacterium , Salmonidae , Animais , Aquicultura , Doenças dos Peixes/epidemiologia , Infecções por Flavobacteriaceae/epidemiologia , Infecções por Flavobacteriaceae/microbiologia , Great Lakes Region/epidemiologia , Prevalência , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...