Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Exp Neurol ; 379: 114861, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38876196

RESUMO

Drug-resistant epilepsy patients may benefit from non-pharmacological therapies, such as the ketogenic diet (KD). However, its high fat content poses compliance challenges and metabolic risks. To mitigate this, we developed a novel KD composition with less fat and additional nutrients (citrate, nicotinamide riboside, and omega-3 fatty acids) for ketone-independent neuroprotection. The efficacy, metabolic and neuropathological effects of the novel KD and a classic KD were compared to a control diet in the rapid kindling model of temporal lobe epilepsy. Both KD groups entered ketosis before kindling onset, with higher ketone levels in the classic KD group. Remarkably, rats on the novel KD had slower progression of behavioral seizures as compared to rats on a control diet, while this was not the case for rats on a classic KD. Both KDs reduced electrographic after-discharge duration, preserved neurons in the dorsal hippocampus, and normalized activity in open field tests. The novel KD, despite lower fat and ketone levels, demonstrated effective reduction of behavioral seizure severity while the classic KD did not, suggesting alternative mode(s) of action are involved. Additionally, the novel KD significantly mitigated liver triglyceride and plasma fatty acid levels compared to the classic KD, indicating a reduced risk of long-term liver steatosis. Our findings highlight the potential of the novel KD to enhance therapeutic efficacy and compliance in epilepsy patients.

2.
Sci Rep ; 14(1): 11940, 2024 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-38789658

RESUMO

The classic ketogenic diet is an effective treatment option for drug-resistant epilepsy, but its high fat content challenges patient compliance. Optimizing liver ketone production guided by a method comparing substrates for their ketogenic potential may help to reduce the fat content of the diet without loss in ketosis induction. Here, we present a liver cell assay measuring the ß-hydroxybutyrate (ßHB) yield from fatty acid substrates. Even chain albumin-conjugated fatty acids comprising between 4 and 18 carbon atoms showed a sigmoidal concentration-ßHB response curve (CRC) whereas acetate and omega-3 PUFAs produced no CRC. While CRCs were not distinguished by their half-maximal effective concentration (EC50), they differed by maximum response, which related inversely to the carbon chain length and was highest for butyrate. The assay also suitably assessed the ßHB yield from fatty acid blends detecting shifts in maximum response from exchanging medium chain fatty acids for long chain fatty acids. The assay further detected a dual role for butyrate and hexanoic acid as ketogenic substrate at high concentration and ketogenic enhancer at low concentration, augmenting the ßHB yield from oleic acid and a fatty acid blend. The assay also found propionate to inhibit ketogenesis from oleic acid and a fatty acid blend at low physiological concentration. Although the in vitro assay shows promise as a tool to optimize the ketogenic yield of a fat blend, its predictive value requires human validation.


Assuntos
Ácido 3-Hidroxibutírico , Dieta Cetogênica , Hepatócitos , Cetonas , Dieta Cetogênica/métodos , Humanos , Hepatócitos/metabolismo , Cetonas/metabolismo , Ácido 3-Hidroxibutírico/metabolismo , Epilepsia/dietoterapia , Epilepsia/metabolismo , Ácidos Graxos/metabolismo , Epilepsia Resistente a Medicamentos/dietoterapia , Epilepsia Resistente a Medicamentos/metabolismo
3.
Regul Toxicol Pharmacol ; 143: 105458, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37453556

RESUMO

Skin sensitisation is a key adverse human health effect to be addressed in the safety assessment of cosmetic ingredients. Regulatory demands and scientific progress have led to the development of a Next Generation Risk Assessment (NGRA) framework, relying on the use of New Approach Methodologies (NAM) Defined Approaches (DA) and read-across instead of generating animal data. This case study illustrates the application of read-across for the prediction of the skin sensitisation potential of vanillin at the hypothetical use concentration of 0.5% in a shower gel and face cream. A three-step process was applied to select the most suitable analogues based on their protein reactivity, structural characteristics, physicochemical properties, skin metabolism profile and availability of skin sensitisation data. The applied read-across approach predicted a weak skin sensitiser potential for vanillin corresponding with a Local Lymph Node Assay EC3 value of 10%. Based on this EC3 value a point of departure of 2500 µg/cm2 was derived, resulting in an acceptable exposure level (AEL) of 25 µg/cm2. Because the consumer exposure levels (CEL) for the face cream (13.5 µg/cm2) and shower gel (0.05 µg/cm2) scenarios were lower than the AEL, the NGRA concluded both uses as safe.


Assuntos
Dermatite Alérgica de Contato , Pele , Animais , Humanos , Benzaldeídos/toxicidade , Ensaio Local de Linfonodo , Medição de Risco/métodos , Dermatite Alérgica de Contato/etiologia
4.
ALTEX ; 40(3): 439-451, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36919358

RESUMO

Cosmetic products must be safe for their intended use. Regulatory bans on animal testing for new ingredients have resulted in a shift towards the use of new approach methodologies (NAMs) such as in silico predictions and in chemico / in vitro data. Defined approaches (DAs) have been developed to interpret combinations of NAMs to provide information on skin sensitization hazard and potency, three having been adopted within OECD Test Guideline 497. However, the challenge remains as to how DAs can be used to derive a quantitative point of departure for use in next generation risk assessment (NGRA). Here we provide an update to our previously published NGRA framework and present two hypothetical consumer risk assessment scenarios (rinse-off and leave-on) on one case study ingredient. Diethanolamine (DEA) was selected as the case study ingredient based on the existing NAM information demonstrating differences with respect to the outcomes from in silico predictions and in chemico / in vitro data. Seven DAs were applied, and these differences resulted in divergent DA outcomes and reduced confidence with respect to the hazard potential and potency predictions. Risk assessment conclusion for the rinse-off exposure led to an overall decision of safe for all applied DAs. Risk assessment conclusion for the higher leave-on exposure was safe when based on some DAs but unsafe based on others. The reasons for this were evaluated as well as the inherent uncertainty from the use of each NAM and DA in the risk assessment, enabling further refinement of our NGRA framework.


Assuntos
Alternativas aos Testes com Animais , Cosméticos , Animais , Pele , Medição de Risco , Cosméticos/toxicidade
5.
Int J Mol Sci ; 24(3)2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36769143

RESUMO

Traumatic brain injury (TBI) causes 10-20% of structural epilepsies and 5% of all epilepsies. The lack of prognostic biomarkers for post-traumatic epilepsy (PTE) is a major obstacle to the development of anti-epileptogenic treatments. Previous studies revealed TBI-induced alterations in blood microRNA (miRNA) levels, and patients with epilepsy exhibit dysregulation of blood miRNAs. We hypothesized that acutely altered plasma miRNAs could serve as prognostic biomarkers for brain damage severity and the development of PTE. To investigate this, epileptogenesis was induced in adult male Sprague Dawley rats by lateral fluid-percussion-induced TBI. Epilepsy was defined as the occurrence of at least one unprovoked seizure during continuous 1-month video-electroencephalography monitoring in the sixth post-TBI month. Cortical pathology was analyzed by magnetic resonance imaging on day 2 (D2), D7, and D21, and by histology 6 months post-TBI. Small RNA sequencing was performed from tail-vein plasma samples on D2 and D9 after TBI (n = 16, 7 with and 9 without epilepsy) or sham operation (n = 4). The most promising miRNA biomarker candidates were validated by droplet digital polymerase chain reaction in a validation cohort of 115 rats (8 naïve, 17 sham, and 90 TBI rats [21 with epilepsy]). These included 7 brain-enriched plasma miRNAs (miR-434-3p, miR-9a-3p, miR-136-3p, miR-323-3p, miR-124-3p, miR-212-3p, and miR-132-3p) that were upregulated on D2 post-TBI (p < 0.001 for all compared with naïve rats). The acute post-TBI plasma miRNA profile did not predict the subsequent development of PTE or PTE severity. Plasma miRNA levels, however, predicted the cortical pathology severity on D2 (Spearman ρ = 0.345-0.582, p < 0.001), D9 (ρ = 0.287-0.522, p < 0.001-0.01), D21 (ρ = 0.269-0.581, p < 0.001-0.05) and at 6 months post-TBI (ρ = 0.230-0.433, p < 0.001-0.05). We found that the levels of 6 of 7 miRNAs also reflected mild brain injury caused by the craniotomy during sham operation (ROC AUC 0.76-0.96, p < 0.001-0.05). In conclusion, our findings revealed that increased levels of neuronally enriched miRNAs in the blood circulation after TBI reflect the extent of cortical injury in the brain but do not predict PTE development.


Assuntos
Lesões Encefálicas Traumáticas , Lesões Encefálicas , MicroRNA Circulante , Epilepsia , MicroRNAs , Ratos , Masculino , Animais , Ratos Sprague-Dawley , Lesões Encefálicas Traumáticas/patologia , Lesões Encefálicas/complicações , MicroRNAs/genética , Epilepsia/genética , Biomarcadores , Modelos Animais de Doenças
6.
Epilepsia Open ; 2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36259125

RESUMO

The International League Against Epilepsy/American Epilepsy Society (ILAE/AES) Joint Translational Task Force established the TASK3 working groups to create common data elements (CDEs) for various preclinical epilepsy research disciplines. This is the second in a two-part series of omics papers, with the other including genomics, transcriptomics, and epigenomics. The aim of the CDEs was to improve the standardization of experimental designs across a range of epilepsy research-related methods. We have generated CDE tables with key parameters and case report forms (CRFs) containing the essential contents of the study protocols for proteomics, lipidomics, and metabolomics of samples from rodent models and people with epilepsy. We discuss the important elements that need to be considered for the proteomics, lipidomics, and metabolomics methodologies, providing a rationale for the parameters that should be documented.

7.
Biomedicines ; 10(10)2022 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-36289737

RESUMO

Seizures are one of the most common symptoms of brain tumors. The incidence of seizures differs among brain tumor type, grade, location and size, but paediatric-type diffuse low-grade gliomas/glioneuronal tumors are often highly epileptogenic. The extracellular matrix (ECM) is known to play a role in epileptogenesis and tumorigenesis because it is involved in the (re)modelling of neuronal connections and cell-cell signaling. In this review, we discuss the epileptogenicity of brain tumors with a focus on tumor type, location, genetics and the role of the extracellular matrix. In addition to functional problems, epileptogenic tumors can lead to increased morbidity and mortality, stigmatization and life-long care. The health advantages can be major if the epileptogenic properties of brain tumors are better understood. Surgical resection is the most common treatment of epilepsy-associated tumors, but post-surgery seizure-freedom is not always achieved. Therefore, we also discuss potential novel therapies aiming to restore ECM function.

8.
Epilepsia ; 63(11): 2925-2936, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36053862

RESUMO

OBJECTIVE: Prolonged postictal generalized electroencephalographic suppression (PGES) is a potential biomarker for sudden unexpected death in epilepsy (SUDEP), which may be associated with dysfunctional autonomic responses and serotonin signaling. To better understand molecular mechanisms, PGES duration was correlated to 5HT1A and 5HT2A receptor protein expression and RNAseq from resected hippocampus and temporal cortex of temporal lobe epilepsy patients with seizures recorded in preoperative evaluation. METHODS: Analyses included 36 cases (age = 14-64 years, age at epilepsy onset = 0-51 years, epilepsy duration = 2-53 years, PGES duration = 0-93 s), with 13 cases in all hippocampal analyses. 5HT1A and 5HT2A protein was evaluated by Western blot and histologically in hippocampus (n = 16) and temporal cortex (n = 9). We correlated PGES duration to our previous RNAseq dataset for serotonin receptor expression and signaling pathways, as well as weighted gene correlation network analysis (WGCNA) to identify correlated gene clusters. RESULTS: In hippocampus, 5HT2A protein by Western blot positively correlated with PGES duration (p = .0024, R2  = .52), but 5HT1A did not (p = .87, R2  = .0020). In temporal cortex, 5HT1A and 5HT2A had lower expression and did not correlate with PGES duration. Histologically, PGES duration did not correlate with 5HT1A or 5HT2A expression in hippocampal CA4, dentate gyrus, or temporal cortex. RNAseq identified two serotonin receptors with expression that correlated with PGES duration in an exploratory analysis: HTR3B negatively correlated (p = .043, R2  = .26) and HTR4 positively correlated (p = .049, R2  = .25). WGCNA identified four modules correlated with PGES duration, including positive correlation with synaptic transcripts (p = .040, Pearson correlation r = .52), particularly potassium channels (KCNA4, KCNC4, KCNH1, KCNIP4, KCNJ3, KCNJ6, KCNK1). No modules were associated with serotonin receptor signaling. SIGNIFICANCE: Higher hippocampal 5HT2A receptor protein and potassium channel transcripts may reflect underlying mechanisms contributing to or resulting from prolonged PGES. Future studies with larger cohorts should assess functional analyses and additional brain regions to elucidate mechanisms underlying PGES and SUDEP risk.


Assuntos
Epilepsia do Lobo Temporal , Epilepsia , Morte Súbita Inesperada na Epilepsia , Humanos , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Recém-Nascido , Lactente , Pré-Escolar , Criança , Serotonina , Epilepsia do Lobo Temporal/genética , Epilepsia do Lobo Temporal/cirurgia , Eletroencefalografia/métodos , Epilepsia/patologia , Lobo Temporal/patologia , Hipocampo/patologia , Receptores de Serotonina/genética
9.
Biomedicines ; 10(9)2022 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-36140216

RESUMO

Matrix metalloproteinases (MMPs) are endopeptidases responsible for the cleavage of intra- and extracellular proteins. Several brain MMPs have been implicated in neurological disorders including epilepsy. We recently showed that the novel gelatinase inhibitor ACT-03 has disease-modifying effects in models of epilepsy. Here, we studied its effects on neuroinflammation and blood-brain barrier (BBB) integrity. Using the rapid kindling rat model of epilepsy, we examined whether ACT-03 affected astro- and microgliosis in the brain using immunohistochemistry. Cellular and molecular alterations were further studied in vitro using human fetal astrocyte and brain endothelial cell (hCMEC/D3) cultures, with a focus on neuroinflammatory markers as well as on barrier permeability using an endothelial and astrocyte co-culture model. We observed less astro- and microgliosis in the brains of kindled animals treated with ACT-03 compared to control vehicle-treated animals. In vitro, ACT-03 treatment attenuated stimulation-induced mRNA expression of several pro-inflammatory factors in human fetal astrocytes and brain endothelial cells, as well as a loss of barrier integrity in endothelial and astrocyte co-cultures. Since ACT-03 has disease-modifying effects in epilepsy models, possibly via limiting gliosis, inflammation, and barrier integrity loss, it is of interest to further evaluate its effects in a clinical trial.

10.
Epilepsia Open ; 2022 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-35950645

RESUMO

The International League Against Epilepsy/American Epilepsy Society (ILAE/AES) Joint Translational Task Force established the TASK3 working groups to create common data elements (CDEs) for various preclinical epilepsy research disciplines. The aim of the CDEs is to improve the standardization of experimental designs across a range of epilepsy research-related methods. Here, we have generated CDE tables with key parameters and case report forms (CRFs) containing the essential contents of the study protocols for genomics, transcriptomics, and epigenomics in rodent models of epilepsy, with a specific focus on adult rats and mice. We discuss the important elements that need to be considered for genomics, transcriptomics, and epigenomics methodologies, providing a rationale for the parameters that should be collected. This is the first in a two-part series of omics papers with the second installment to cover proteomics, lipidomics, and metabolomics in adult rodents.

11.
Epilepsia Open ; 2022 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-35962745

RESUMO

The International League Against Epilepsy/American Epilepsy Society (ILAE/AES) Joint Translational Task Force established the TASK3 working groups to create common data elements (CDEs) for various aspects of preclinical epilepsy research studies, which could help improve the standardization of experimental designs. In this article, we discuss CDEs for neuroimaging data that are collected in rodent models of epilepsy, with a focus on adult rats and mice. We provide detailed CDE tables and case report forms (CRFs), and with this companion manuscript, we discuss the methodologies for several imaging modalities and the parameters that can be collected.

12.
Sci Transl Med ; 14(652): eabj4310, 2022 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-35857628

RESUMO

Inflammatory processes induced by brain injury are important for recovery; however, when uncontrolled, inflammation can be deleterious, likely explaining why most anti-inflammatory treatments have failed to improve neurological outcomes after brain injury in clinical trials. In the thalamus, chronic activation of glial cells, a proxy of inflammation, has been suggested as an indicator of increased seizure risk and cognitive deficits that develop after cortical injury. Furthermore, lesions in the thalamus, more than other brain regions, have been reported in patients with viral infections associated with neurological deficits, such as SARS-CoV-2. However, the extent to which thalamic inflammation is a driver or by-product of neurological deficits remains unknown. Here, we found that thalamic inflammation in mice was sufficient to phenocopy the cellular and circuit hyperexcitability, enhanced seizure risk, and disruptions in cortical rhythms that develop after cortical injury. In our model, down-regulation of the GABA transporter GAT-3 in thalamic astrocytes mediated this neurological dysfunction. In addition, GAT-3 was decreased in regions of thalamic reactive astrocytes in mouse models of cortical injury. Enhancing GAT-3 in thalamic astrocytes prevented seizure risk, restored cortical states, and was protective against severe chemoconvulsant-induced seizures and mortality in a mouse model of traumatic brain injury, emphasizing the potential of therapeutically targeting this pathway. Together, our results identified a potential therapeutic target for reducing negative outcomes after brain injury.


Assuntos
Lesões Encefálicas , COVID-19 , Animais , Astrócitos/metabolismo , Modelos Animais de Doenças , Proteínas da Membrana Plasmática de Transporte de GABA/metabolismo , Inflamação/patologia , Camundongos , Polímeros , Roedores/metabolismo , SARS-CoV-2 , Convulsões , Tálamo/metabolismo , Tálamo/patologia
13.
Nat Rev Neurol ; 18(9): 530-543, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35859062

RESUMO

An increasing number of epilepsies are being attributed to variants in genes with epigenetic functions. The products of these genes include factors that regulate the structure and function of chromatin and the placing, reading and removal of epigenetic marks, as well as other epigenetic processes. In this Review, we provide an overview of the various epigenetic processes, structuring our discussion around five function-based categories: DNA methylation, histone modifications, histone-DNA crosstalk, non-coding RNAs and chromatin remodelling. We provide background information on each category, describing the general mechanism by which each process leads to altered gene expression. We also highlight key clinical and mechanistic aspects, providing examples of genes that strongly associate with epilepsy within each class. We consider the practical applications of these findings, including tissue-based and biofluid-based diagnostics and precision medicine-based treatments. We conclude that variants in epigenetic genes are increasingly found to be causally involved in the epilepsies, with implications for disease mechanisms, treatments and diagnostics.


Assuntos
Epigênese Genética , Epilepsia , Metilação de DNA/genética , Epigênese Genética/genética , Epilepsia/genética , Histonas/genética , Histonas/metabolismo , Humanos , Processamento de Proteína Pós-Traducional
14.
Regul Toxicol Pharmacol ; 131: 105169, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35447229

RESUMO

The assessment of skin sensitisation is a key requirement in all regulated sectors, with the European Union's regulation of cosmetic ingredients being most challenging, since it requires quantitative skin sensitisation assessment based on new approach methodologies (NAMs). To address this challenge, an in-depth and harmonised understanding of NAMs is fundamental to inform the assessment. Therefore, we compiled a database of NAMs, and in vivo (human and local lymph node assay) reference data. Here, we expanded this database with 41 substances highly relevant for cosmetic industry. These structurally different substances were tested in six NAMs (Direct Peptide Reactivity Assay, KeratinoSens™, human Cell Line Activation Test, U-SENS™, SENS-IS, Peroxidase Peptide Reactivity Assay). Our analysis revealed that the substances could be tested without technical limitations, but were generally overpredicted when compared to reference results. Reasons for this reduced predictivity were explored through pairwise NAM comparisons and association of overprediction with hydrophobicity. We conclude that more detailed understanding of how NAMs apply to a wider range of substances is needed. This would support a flexible and informed choice of NAMs to be optimally applied in the context of a next generation risk assessment framework, ultimately contributing to the characterisation and reduction of uncertainty.


Assuntos
Cosméticos , Dermatite Alérgica de Contato , Alternativas aos Testes com Animais/métodos , Animais , Cosméticos/toxicidade , Bases de Dados Factuais , Dermatite Alérgica de Contato/etiologia , Humanos , Ensaio Local de Linfonodo , Pele
15.
Epilepsy Res ; 181: 106873, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35180639

RESUMO

PURPOSE: Curcumin is known for its neuroprotective, anti-inflammatory and anti-oxidant properties and has been investigated as a potential therapeutic drug for Temporal Lobe Epilepsy (TLE). We previously found anti-epileptogenic properties of curcumin in an in vitro brain slice model for epileptogenesis, and inhibitory effects on the MAPK-pathway in vivo after intracerebrally applying curcumin in post-status epilepticus rats. Here, we investigated whether the intracerebral application of curcumin could be anti-epileptogenic in the rapid kindling rat model for TLE. METHODS: Curcumin or vehicle was injected directly into the brain through an intracerebral ventricular cannula at 5 consecutive days during the kindling process. Kindling consisted of repeated electrical stimulations of the angular bundle (12 times a day with a 30 min interval) every other day, until rats were fully kindled or until 36 stimulations were administered. One week after kindling acquisition, additional kindling stimulations were applied in a re-test in the absence of curcumin- or vehicle treatment. RESULTS: Curcumin-treated rats required more stimulations compared to vehicle-treated rats to reach Racine stage IV seizures, indicating that curcumin delayed seizure development. However, it did not prevent the fully kindled state as shown in the re-test. Increasing the dose of curcumin did not produce a delay in seizure development. Immunohistochemistry showed that kindling produced cell loss, astrogliosis, mossy fiber sprouting and neurogenesis in the dentate gyrus, which were not different between vehicle- and curcumin-treated groups. CONCLUSION: Although curcumin's effects on neuropathology were not detected and the delay of kindling development was transient, the data warrant further exploration of its anti-epileptogenic potential using formulations that further increase its bioavailability.


Assuntos
Curcumina , Epilepsia do Lobo Temporal , Excitação Neurológica , Estado Epiléptico , Animais , Curcumina/farmacologia , Curcumina/uso terapêutico , Modelos Animais de Doenças , Epilepsia do Lobo Temporal/tratamento farmacológico , Ratos , Convulsões/tratamento farmacológico , Estado Epiléptico/tratamento farmacológico
16.
Epilepsia ; 63(6): 1297-1313, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35218208

RESUMO

The term neurovascular unit (NVU) describes the structural and functional liaison between specialized brain endothelium, glial and mural cells, and neurons. Within the NVU, the blood-brain barrier (BBB) is the microvascular structure regulating neuronal physiology and immune cross-talk, and its properties adapt to brain aging. Here, we analyze a research framework where NVU dysfunction, caused by acute insults or disease progression in the aging brain, represents a converging mechanism underlying late-onset seizures or epilepsy and neurological or neurodegenerative sequelae. Furthermore, seizure activity may accelerate brain aging by sustaining regional NVU dysfunction, and a cerebrovascular pathology may link seizures to comorbidities. Next, we focus on NVU diagnostic approaches that could be tailored to seizure conditions in the elderly. We also examine the impending disease-modifying strategies based on the restoration of the NVU and, more in general, the homeostatic control of anti- and pro-inflammatory players. We conclude with an outlook on current pre-clinical knowledge gaps and clinical challenges pertinent to seizure onset and conditions in an aging population.


Assuntos
Barreira Hematoencefálica , Epilepsia , Idoso , Envelhecimento , Encéfalo , Humanos , Convulsões
17.
J Neurodev Disord ; 14(1): 8, 2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-35030990

RESUMO

BACKGROUND: The genetic disorder tuberous sclerosis complex (TSC) is frequently accompanied by the development of neuropsychiatric disorders, including autism spectrum disorder and intellectual disability, with varying degrees of impairment. These co-morbidities in TSC have been linked to the structural brain abnormalities, such as cortical tubers, and recurrent epileptic seizures (in 70-80% cases). Previous transcriptomic analysis of cortical tubers revealed dysregulation of genes involved in cell adhesion in the brain, which may be associated with the neurodevelopmental deficits in TSC. In this study we aimed to investigate the expression of one of these genes - cell-adhesion molecule contactin-3. METHODS: Reverse transcription quantitative polymerase chain reaction for the contactin-3 gene (CNTN3) was performed in resected cortical tubers from TSC patients with drug-resistant epilepsy (n = 35, age range: 1-48 years) and compared to autopsy-derived cortical control tissue (n = 27, age range: 0-44 years), as well as by western blot analysis of contactin-3 (n = 7 vs n = 7, age range: 0-3 years for both TSC and controls) and immunohistochemistry (n = 5 TSC vs n = 4 controls). The expression of contactin-3 was further analyzed in fetal and postnatal control tissue by western blotting and in-situ hybridization, as well as in the SH-SY5Y neuroblastoma cell line differentiation model in vitro. RESULTS: CNTN3 gene expression was lower in cortical tubers from patients across a wide range of ages (fold change = - 0.5, p < 0.001) as compared to controls. Contactin-3 protein expression was lower in the age range of 0-3 years old (fold change = - 3.8, p < 0.001) as compared to the age-matched controls. In control brain tissue, contactin-3 gene and protein expression could be detected during fetal development, peaked around birth and during infancy and declined in the adult brain. CNTN3 expression was induced in the differentiated SH-SY5Y neuroblastoma cells in vitro (fold change = 6.2, p < 0.01). CONCLUSIONS: Our data show a lower expression of contactin-3 in cortical tubers of TSC patients during early postnatal period as compared to controls, which may affect normal brain development and might contribute to neuropsychiatric co-morbidities observed in patients with TSC.


Assuntos
Contactinas , Esclerose Tuberosa , Adolescente , Adulto , Transtorno do Espectro Autista/complicações , Transtorno do Espectro Autista/metabolismo , Encéfalo/metabolismo , Criança , Pré-Escolar , Contactinas/genética , Contactinas/metabolismo , Regulação para Baixo , Humanos , Lactente , Recém-Nascido , Pessoa de Meia-Idade , Esclerose Tuberosa/complicações , Esclerose Tuberosa/metabolismo , Adulto Jovem
18.
Regul Toxicol Pharmacol ; 126: 105044, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34506879

RESUMO

The inter-laboratory performance of Isolated Chicken Eye (ICE) histopathology scoring was assessed for predicting EU CLP/UN GHS Cat. 1 surfactants. Furthermore, the predictive capacity of ICE histopathology was evaluated for the combined dataset of surfactants and existing data for non-extreme pH (2 < pH < 11.5) detergents. Use of ICE histopathology led to increased sensitivity compared to the ICE test method alone for surfactants. When combined with the existing dataset of detergents, use of histopathology in addition to the standard ICE test method decreased the false negative rates from 64% (14/22) to 27% (6/22); increased accuracy from 53% (16/30) to 77% (23/30); and led to acceptable level of false positives (from 0/8 to 1/8 (12.5%). Moreover, good reproducibility of ICE histopathology predictions conducted on the same slides was found between pathologists and peer-reviewers from three independent laboratories (10/12 or 83%) and over time. Use of ICE histopathology was therefore found suitable to predict EU CLP/UN GHS Cat. 1 surfactants and non-extreme pH detergents. In addition, appropriate reproducibility of ICE histopathology was found, provided that i) an internal peer-review system was in place; ii) original slides were assessed to enable evaluation of three dimensional effects; and iii) appropriate training and proficiency appraisal were conducted.


Assuntos
Detergentes/efeitos adversos , Traumatismos Oculares/induzido quimicamente , Patologia/métodos , Tensoativos/efeitos adversos , Animais , Galinhas , Reações Falso-Negativas , Reações Falso-Positivas , Concentração de Íons de Hidrogênio , Patologia/normas , Reprodutibilidade dos Testes , Nações Unidas
19.
Neurosci Biobehav Rev ; 131: 834-846, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34517036

RESUMO

Status Epilepticus (SE) is often a neurological emergency characterized by abnormally sustained, longer than habitual seizures. The new ILAE classification reports that SE "…can have long-term consequences including neuronal death, neuronal injury…depending on the type and duration of seizures". While it is accepted that generalized convulsive SE exerts detrimental effects on the brain, it is not clear if other forms of SE, such as focal non-convulsive SE, leads to brain pathology and contributes to long-term deficits in patients. With the available clinical and experimental data, it is hard to discriminate the specific action of the underlying SE etiologies from that exerted by epileptiform activity. This information is highly relevant in the clinic for better treatment stratification, which may include both medical and surgical intervention for seizure control. Here we review experimental studies of focal SE, with an emphasis on focal non-convulsive SE. We present a repertoire of brain pathologies observed in the most commonly used animal models and attempt to establish a link between experimental findings and human condition(s). The extensive literature on focal SE animal models suggest that the current approaches have significant limitations in terms of translatability of the findings to the clinic. We highlight the need for a more stringent description of SE features and brain pathology in experimental studies in animal models, to improve the accuracy in predicting clinical translation.


Assuntos
Estado Epiléptico , Animais , Encéfalo/patologia , Modelos Animais de Doenças , Humanos , Convulsões , Estado Epiléptico/tratamento farmacológico , Estado Epiléptico/patologia
20.
Acta Neuropathol ; 142(4): 729-759, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34292399

RESUMO

Neuronal dysfunction due to iron accumulation in conjunction with reactive oxygen species (ROS) could represent an important, yet underappreciated, component of the epileptogenic process. However, to date, alterations in iron metabolism in the epileptogenic brain have not been addressed in detail. Iron-related neuropathology and antioxidant metabolic processes were investigated in resected brain tissue from patients with temporal lobe epilepsy and hippocampal sclerosis (TLE-HS), post-mortem brain tissue from patients who died after status epilepticus (SE) as well as brain tissue from the electrically induced SE rat model of TLE. Magnetic susceptibility of the presumed seizure-onset zone from three patients with focal epilepsy was compared during and after seizure activity. Finally, the cellular effects of iron overload were studied in vitro using an acute mouse hippocampal slice preparation and cultured human fetal astrocytes. While iron-accumulating neurons had a pyknotic morphology, astrocytes appeared to acquire iron-sequestrating capacity as indicated by prominent ferritin expression and iron retention in the hippocampus of patients with SE or TLE. Interictal to postictal comparison revealed increased magnetic susceptibility in the seizure-onset zone of epilepsy patients. Post-SE rats had consistently higher hippocampal iron levels during the acute and chronic phase (when spontaneous recurrent seizures are evident). In vitro, in acute slices that were exposed to iron, neurons readily took up iron, which was exacerbated by induced epileptiform activity. Human astrocyte cultures challenged with iron and ROS increased their antioxidant and iron-binding capacity, but simultaneously developed a pro-inflammatory phenotype upon chronic exposure. These data suggest that seizure-mediated, chronic neuronal iron uptake might play a role in neuronal dysfunction/loss in TLE-HS. On the other hand, astrocytes sequester iron, specifically in chronic epilepsy. This function might transform astrocytes into a highly resistant, pro-inflammatory phenotype potentially contributing to pro-epileptogenic inflammatory processes.


Assuntos
Epilepsia do Lobo Temporal/complicações , Hipocampo/metabolismo , Distúrbios do Metabolismo do Ferro/etiologia , Ferro/metabolismo , Estado Epiléptico/complicações , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Astrócitos/metabolismo , Astrócitos/patologia , Estudos de Casos e Controles , Técnicas de Cultura de Células , Modelos Animais de Doenças , Epilepsia do Lobo Temporal/metabolismo , Epilepsia do Lobo Temporal/patologia , Feminino , Humanos , Distúrbios do Metabolismo do Ferro/patologia , Masculino , Pessoa de Meia-Idade , Estresse Oxidativo/fisiologia , Ratos , Estado Epiléptico/metabolismo , Estado Epiléptico/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...