Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta ; 1828(8): 1856-62, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23541906

RESUMO

To better understand the relationship between the relative cytotoxicity of diluted ionic liquids and their specific interaction with biological membranes, the thermotropic behavior of model lipid membrane systems formulated in a series of choline based organic salts was investigated. Unilamellar vesicles prepared from dipalmitoylphosphatidylcholine were exposed to a series of choline phosphate salts at a concentration of 10mM at pH7.40, and the gel to liquid-crystalline state transition was examined using differential scanning calorimetry. The choline salts that were observed to have a low relative toxicity in previous studies induced minimal changes in the lipid phase transition behavior of these model membranes. In contrast, the salts choline bis(2,4,4-trimethylpentyl)phosphinate and choline bis(2-ethylhexyl)phosphate, both of which were observed to have high relative toxicity, caused distinct disruptions in the lipid phase transition behavior, consistent with penetration of the salts into the acyl chains of the phospholipids. choline bis(2,4,4-trimethylpentyl)phosphinate reduced the Tm and enthalpy of the main transition of dipalmitoylphosphatidylcholine while choline bis(2-ethylhexyl)phosphate induced the equilibration of alternate phases.


Assuntos
Colina/metabolismo , Bicamadas Lipídicas/metabolismo , Lipídeos de Membrana/metabolismo , Membranas Artificiais , Sais/metabolismo , Varredura Diferencial de Calorimetria , Colina/química , Espectroscopia de Ressonância Magnética , Transição de Fase , Sais/química , Temperatura , Termodinâmica
2.
Phys Chem Chem Phys ; 14(2): 790-801, 2012 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-22089924

RESUMO

Ionic liquids are being intensely studied as promising media for the stabilization of proteins and other biomolecules. Choline dihydrogen phosphate (CDHP) has been identified as one of the most promising candidates for this application. In this work we have probed in more detail the effects that CDHP may have on the thermodynamics, structure, and stability of proteins, including one of therapeutic interest. Microcalorimetry and circular dichroism spectropolarimetry (CD) were used to assess the thermal stability of protein solutions in CDHP/water mixtures at various concentrations. Increasing thermal stability of lysozyme and interleukin-2 in proportion to CDHP concentration was observed. Isothermal titration calorimetry (ITC) was used to quantify binding interactions, and indicate that the mechanism for stability does not appear to be dependent upon CDHP binding to protein. CD and small angle X-ray scattering (SAXS) analyses were used to probe for structural changes due to the presence of CDHP. SAXS indicates charge effects on the surface of the protein play a role in protein stability in ionic liquids, and no significant alteration of the overall tertiary conformation of lysozyme was observed at 25 °C. However, after incubation at 37 °C or at higher concentrations of CDHP, small changes in protein structure were seen. Effects on protein activity were monitored using turbidity assays, and CDHP decreases protein activity but does not eliminate it. Protein solubility was also monitored using a turbidity assay and was found to be inversely proportional to the concentration of CDHP in solution.


Assuntos
Interleucina-2/química , Líquidos Iônicos/química , Muramidase/química , Calorimetria , Dicroísmo Circular , Espalhamento a Baixo Ângulo , Solubilidade , Temperatura , Termodinâmica , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...