Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 111(6): 065003, 2013 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-23971581

RESUMO

The first measurements of multiple, high-pressure shock waves in cryogenic deuterium-tritium (DT) ice layered capsule implosions on the National Ignition Facility have been performed. The strength and relative timing of these shocks must be adjusted to very high precision in order to keep the DT fuel entropy low and compressibility high. All previous measurements of shock timing in inertial confinement fusion implosions [T. R. Boehly et al., Phys. Rev. Lett. 106, 195005 (2011), H. F. Robey et al., Phys. Rev. Lett. 108, 215004 (2012)] have been performed in surrogate targets, where the solid DT ice shell and central DT gas regions were replaced with a continuous liquid deuterium (D2) fill. This report presents the first experimental validation of the assumptions underlying this surrogate technique.

2.
Phys Rev Lett ; 108(13): 135006, 2012 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-22540711

RESUMO

We have imaged hard x-ray (>100 keV) bremsstrahlung emission from energetic electrons slowing in a plastic ablator shell during indirectly driven implosions at the National Ignition Facility. We measure 570 J in electrons with E>100 keV impinging on the fusion capsule under ignition drive conditions. This translates into an acceptable increase in the adiabat α, defined as the ratio of total deuterium-tritium fuel pressure to Fermi pressure, of 3.5%. The hard x-ray observables are consistent with detailed radiative-hydrodynamics simulations, including the sourcing and transport of these high energy electrons.

3.
Appl Opt ; 47(19): 3494-9, 2008 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-18594596

RESUMO

A single beamline of the National Ignition Facility (NIF) has been operated at a wavelength of 526.5 nm (2 omega) by frequency converting the fundamental 1053 nm (1 omega) wavelength with an 18.2 mm thick type-I potassium dihydrogen phosphate (KDP) second-harmonic generator (SHG) crystal. Second-harmonic energies of up to 17.9 kJ were measured at the final optics focal plane with a conversion efficiency of 82%. For a similarly configured 192-beam NIF, this scales to a total 2 omega energy of 3.4 MJ full NIF equivalent (FNE).

4.
Appl Opt ; 46(16): 3276-303, 2007 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-17514286

RESUMO

The National Ignition Facility (NIF) is the world's largest laser system. It contains a 192 beam neodymium glass laser that is designed to deliver 1.8 MJ at 500 TW at 351 nm in order to achieve energy gain (ignition) in a deuterium-tritium nuclear fusion target. To meet this goal, laser design criteria include the ability to generate pulses of up to 1.8 MJ total energy, with peak power of 500 TW and temporal pulse shapes spanning 2 orders of magnitude at the third harmonic (351 nm or 3omega) of the laser wavelength. The focal-spot fluence distribution of these pulses is carefully controlled, through a combination of special optics in the 1omega (1053 nm) portion of the laser (continuous phase plates), smoothing by spectral dispersion, and the overlapping of multiple beams with orthogonal polarization (polarization smoothing). We report performance qualification tests of the first eight beams of the NIF laser. Measurements are reported at both 1omega and 3omega, both with and without focal-spot conditioning. When scaled to full 192 beam operation, these results demonstrate, to the best of our knowledge for the first time, that the NIF will meet its laser performance design criteria, and that the NIF can simultaneously meet the temporal pulse shaping, focal-spot conditioning, and peak power requirements for two candidate indirect drive ignition designs.

5.
Phys Rev Lett ; 95(21): 215004, 2005 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-16384150

RESUMO

The first hohlraum experiments on the National Ignition Facility (NIF) using the initial four laser beams tested radiation temperature limits imposed by plasma filling. For a variety of hohlraum sizes and pulse lengths, the measured x-ray flux shows signatures of filling that coincide with hard x-ray emission from plasma streaming out of the hohlraum. These observations agree with hydrodynamic simulations and with an analytical model that includes hydrodynamic and coronal radiative losses. The modeling predicts radiation temperature limits with full NIF (1.8 MJ), greater, and of longer duration than required for ignition hohlraums.

6.
Phys Rev Lett ; 94(9): 095005, 2005 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-15783974

RESUMO

The first hydrodynamic experiments were performed on the National Ignition Facility. A supersonic jet was formed via the interaction of a laser driven shock ( approximately 40 Mbar) with 2D and 3D density perturbations. The temporal evolution of the jet's spatial scales and ejected mass were measured with point-projection x-ray radiography. Measurements of the large-scale features and mass are in good agreement with 2D and 3D numerical simulations. These experiments provide quantitative data on the evolution of 3D supersonic jets and provide insight into their 3D behavior.

7.
Appl Opt ; 39(25): 4540-6, 2000 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-18350042

RESUMO

We performed a direct side-by-side comparison of a Shack-Hartmann wave-front sensor and a phase-shifting interferometer for the purpose of characterizing large optics. An expansion telescope of our own design allowed us to measure the surface figure of a 400-mm-square mirror with both instruments simultaneously. The Shack-Hartmann sensor produced data that closely matched the interferometer data over spatial scales appropriate for the lenslet spacing, and much of the <20-nm rms systematic difference between the two measurements was due to diffraction artifacts that were present in the interferometer data but not in the Shack-Hartmann sensor data. The results suggest that Shack-Hartmann sensors could replace phase-shifting interferometers for many applications, with particular advantages for large-optic metrology.

8.
Appl Opt ; 37(12): 2371-8, 1998 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-18273166

RESUMO

Spatial filters are essential components for maintaining high beam quality in high-energy pulsed laser systems. The long-duration (21 ns) high-energy pulses envisioned for future inertial-confinement fusion drive systems, such as the U.S. National Ignition Facility (NIF), are likely to lead to increased plasma generation and closure effects within the pinholes in the spatial filters. The design goal for the pinhole spatial filter for the NIF design is to remove small-angle scatter in the beam to as little as a ?100-murad divergence. It is uncertain whether this design requirement can be met with a conventional pinhole design. We propose a new pinhole architecture that addresses these issues by incorporating features intended to reduce the rate of plasma generation. Initial experiments with this design have verified its performance improvement relative to a conventional pinhole design.

9.
Appl Opt ; 36(21): 4932-53, 1997 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-18259297

RESUMO

The Beamlet is a single-beam prototype of future multibeam megajoule-class Nd:glass laser drivers for inertial confinement fusion. It uses a multipass main amplifier, adaptive optics, and efficient, high-fluence frequency conversion to the third harmonic. The Beamlet amplifier contains Brewster-angle glass slabs with a clear aperture of 39 cm x 39 cm and a full-aperture plasma-electrode Pockels cell switch. It has been successfully tested over a range of pulse lengths from 1-10 ns up to energies at 1.053 mum of 5.8 kJ at 1 ns and 17.3 kJ at 10 ns. A 39-actuator deformable mirror corrects the beam quality to a Strehl ratio of as much as 0.4. The 1.053-mum output has been converted to the third harmonic at efficiencies as high as 80% and fluences as high as 8.7 J/cm(2) for 3-ns pulses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...