Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
iScience ; 26(10): 107925, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37790276

RESUMO

Bacillus velezensis isolates are among the most promising plant-associated beneficial bacteria used as biocontrol agents. However, various aspects of the chemical communication between the plant and these beneficials, determining root colonization ability, remain poorly described. Here we investigated the molecular basis of such interkingdom interaction occurring upon contact between Bacillus velezensis and its host via the sensing of pectin backbone homogalacturonan (HG). We showed that B. velezensis stimulates key developmental traits via a dynamic process involving two conserved pectinolytic enzymes. This response integrates transcriptional changes leading to the switch from planktonic to sessile cells, a strong increase in biofilm formation, and an accelerated sporulation dynamics while conserving the potential to efficiently produce specialized secondary metabolites. As a whole, we anticipate that this response of Bacillus to cell wall-derived host cues contributes to its establishment and persistence in the competitive rhizosphere niche and ipso facto to its activity as biocontrol agent.

2.
mBio ; 12(6): e0177421, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34724831

RESUMO

Bacillus velezensis is considered as a model species belonging to the so-called Bacillus subtilis complex that evolved typically to dwell in the soil rhizosphere niche and establish an intimate association with plant roots. This bacterium provides protection to its natural host against diseases and represents one of the most promising biocontrol agents. However, the molecular basis of the cross talk that this bacterium establishes with its natural host has been poorly investigated. We show here that these plant-associated bacteria have evolved a polymer-sensing system to perceive their host and that, in response, they increase the production of the surfactin-type lipopeptide. Furthermore, we demonstrate that surfactin synthesis is favored upon growth on root exudates and that this lipopeptide is a key component used by the bacterium to optimize biofilm formation, motility, and early root colonization. In this specific nutritional context, the bacterium also modulates qualitatively the pattern of surfactin homologues coproduced in planta and forms mainly variants that are the most active at triggering plant immunity. Surfactin represents a shared good as it reinforces the defensive capacity of the host. IMPORTANCE Within the plant-associated microbiome, some bacterial species are of particular interest due to the disease protective effect they provide via direct pathogen suppression and/or stimulation of host immunity. While these biocontrol mechanisms are quite well characterized, we still poorly understand the molecular basis of the cross talk these beneficial bacteria initiate with their host. Here, we show that the model species Bacillus velezensis stimulates the production of the surfactin lipopeptide upon sensing pectin as a cell surface molecular pattern and upon feeding on root exudates. Surfactin favors bacterial rhizosphere fitness on one hand and primes the plant immune system on the other hand. Our data therefore illustrate how both partners use this multifunctional compound as a unique shared good to sustain a mutualistic interaction.


Assuntos
Bacillus/metabolismo , Lipopeptídeos/metabolismo , Pectinas/metabolismo , Exsudatos de Plantas/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Simbiose , Bacillus/genética , Interações entre Hospedeiro e Microrganismos , Rizosfera , Microbiologia do Solo
3.
Cells ; 10(10)2021 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-34685657

RESUMO

Flax (Linum usitatissimum L.) seed oil, which accumulates in the embryo, and mucilage, which is synthesized in the seed coat, are of great economic importance for food, pharmaceutical as well as chemical industries. Theories on the link between oil and mucilage production in seeds consist in the spatio-temporal competition of both compounds for photosynthates during the very early stages of seed development. In this study, we demonstrate a positive relationship between seed oil production and seed coat mucilage extrusion in the agronomic model, flax. Three recombinant inbred lines were selected for low, medium and high mucilage and seed oil contents. Metabolite and transcript profiling (1H NMR and DNA oligo-microarrays) was performed on the seeds during seed development. These analyses showed main changes in the seed coat transcriptome during the mid-phase of seed development (25 Days Post-Anthesis), once the mucilage biosynthesis and modification processes are thought to be finished. These transcriptome changes comprised genes that are putatively involved in mucilage chemical modification and oil synthesis, as well as gibberellic acid (GA) metabolism. The results of this integrative biology approach suggest that transcriptional regulations of seed oil and fatty acid (FA) metabolism could occur in the seed coat during the mid-stage of seed development, once the seed coat carbon supplies have been used for mucilage biosynthesis and mechanochemical properties of the mucilage secretory cells.


Assuntos
Linho/crescimento & desenvolvimento , Linho/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Mucilagem Vegetal/metabolismo , Sementes/crescimento & desenvolvimento , Sementes/genética , Transcrição Gênica , Parede Celular/metabolismo , Endosperma/metabolismo , Ácidos Graxos/metabolismo , Linho/ultraestrutura , Giberelinas/metabolismo , Glucose/metabolismo , Endogamia , Cinética , Metabolômica , Fenótipo , Mucilagem Vegetal/ultraestrutura , Óleos de Plantas/metabolismo , Análise de Componente Principal , Recombinação Genética/genética , Sementes/ultraestrutura , Amido/metabolismo , Sacarose/metabolismo , Transcriptoma/genética
4.
Carbohydr Polym ; 248: 116752, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32919555

RESUMO

Rhamnogalaturonans I (RGI) pectins, which are a major component of the plant primary cell wall, can be recalcitrant to digestion by commercial enzymatic cocktails, in particular during fruit juice clarification process. To overcome these problems and get better insights into RGI degradation, three RGI degrading enzymes (RHG: Endo-rhamnogalacturonase; ABF: α-Arabinofuranosidases; GAN: Endo-ß-1,4-galactanase) from Aspergillus aculeatinus were expressed in Pichia pastoris, purified and fully biochemically characterized. All three enzymes showed acidic pH optimum, and temperature optima between 40-50 °C. The Km values were 0.5 mg.ml-1, 1.64 mg.ml-1 and 3.72 mg.ml-1 for RHG, ABF, GAN, respectively. NMR analysis confirmed an endo-acting mode of action for RHG and GAN, and exo-acting mode for ABF. The application potential of these enzymes was assessed by measuring changes in viscosity of RGI-rich camelina mucilage, showing that RHG-GAN enzymes induced a decrease in viscosity by altering the structures of the RGI backbone and sidechains.


Assuntos
Aspergillus/enzimologia , Proteínas Fúngicas/metabolismo , Pectinas/metabolismo , Aspergillus/genética , Aspergillus/metabolismo , Parede Celular/química , Estabilidade Enzimática , Proteínas Fúngicas/genética , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Concentração de Íons de Hidrogênio , Cinética , Espectroscopia de Ressonância Magnética , Pichia/genética , Polissacarídeo-Liases/genética , Polissacarídeo-Liases/metabolismo , Proteínas Recombinantes/metabolismo , Temperatura
5.
Front Plant Sci ; 10: 684, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31293601

RESUMO

The external seed coat cell layer of certain species is specialized in the production and extrusion of a polysaccharide matrix called mucilage. Variations in the content of the released mucilage have been mainly associated with genetically regulated physiological modifications. Understanding the mucilage extrusion process in crop species is of importance to gain deeper insight into the complex cell wall biosynthesis and dynamics. In this study, we took advantage of the varying polysaccharide composition and the size of the flax mucilage secretory cells (MSCs) to study mucilage composition and extrusion in this species of agricultural interest. We demonstrate herein that flax MSCs are structured in four superimposed layers and that rhamnogalacturonans I (RG I) are firstly synthesized, in the upper face, preceding arabinoxylan and glucan synthesis in MSC lower layers. Our results also reveal that the flax mucilage release originates from inside MSC, between the upper and deeper layers, the latter collaborating to trigger polysaccharide expansion, radial cell wall breaking and mucilage extrusion in a peeling fashion. Here, we provide evidence that the layer organization and polysaccharide composition of the MSCs regulate the mucilage release efficiency like a peeling mechanism. Finally, we propose that flax MSCs may represent an excellent model for further investigations of mucilage biosynthesis and its release.

6.
Plant Methods ; 14: 112, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30568724

RESUMO

BACKGROUND: The mucilage is a model to study the polysaccharide biosynthesis since it is produced in large amounts and composed of complex polymers. In addition, it is of great economic interest for its technical and nutritional value. A fast method for phenotyping the released mucilage and the seed morphometric parameters will be useful for fundamental, food, pharmaceutical and breeding researches. Current strategies to phenotype soluble mucilage are restricted to visual evaluations or are highly time-consuming. RESULTS: Here, we developed a high-throughput phenotyping method for the simultaneous measurement of the soluble mucilage content released on a gel and the seed morphometric parameters. Within this context, we combined a biochemical assay and an open-source computer-aided image analysis tool, MuSeeQ. The biochemical assay consists in sowing seeds on an agarose medium containing the dye toluidine blue O, which specifically stains the mucilage once it is released on the gel. The second part of MuSeeQ is a macro developed in ImageJ allowing to quickly extract and analyse 11 morphometric data of seeds and their respective released mucilages. As an example, MuSeeQ was applied on a flax recombinant inbred lines population (previously screened for fatty acids content.) and revealed significant correlations between the soluble mucilage shape and the concentration of some fatty acids, e.g. C16:0 and C18:2. Other fatty acids were also found to correlate with the seed shape parameters, e.g. C18:0 and C18:2. MuSeeQ was then showed to be used for the analysis of other myxospermous species, including Arabidopsis thaliana and Camelina sativa. CONCLUSIONS: MuSeeQ is a low-cost and user-friendly method which may be used by breeders and researchers for phenotyping simultaneously seeds of specific cultivars, natural variants or mutants and their respective soluble mucilage area released on a gel. The script of MuSeeQ and video tutorials are freely available at http://MuSeeQ.free.fr.

7.
J Exp Bot ; 67(8): 2177-90, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26895630

RESUMO

Pectins are major components of plant primary cell walls. They include homogalacturonans (HGs), which are the most abundant pectin and can be the target of apoplastic enzymes like pectin methylesterases (PMEs) that control their methylesterification level. Several PMEs are expressed in the seed coat of Arabidopsis thaliana, particularly in mucilage secretory cells (MSCs). On the basis of public transcriptomic data, seven PME genes were selected and checked for their seed-specific expression by quantitative reverse transcription PCR. Of these, PME58 presented the highest level of expression and was specifically expressed in MSCs at the early stages of seed development. pme58 mutants presented two discrete phenotypes: (i) their adherent mucilage was less stained by ruthenium red when compared to wild-type seeds, but only in the presence of EDTA, a Ca(2+)chelator; and (ii) the MSC surface area was decreased. These phenotypes are the consequence of an increase in the degree of HG methylesterification connected to a decrease in PME activity. Analysis of the sugar composition of soluble and adherent mucilage showed that, in the presence of EDTA, sugars of adherent mucilage were more readily extracted in pme58 mutants. Immunolabelling with LM19, an antibody that preferentially recognizes unesterified HGs, also showed that molecular interactions with HGs were modified in the adherent mucilage of pme58 mutants, suggesting a role of PME58 in mucilage structure and organization. In conclusion, PME58 is the first PME identified to play a direct role in seed mucilage structure.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Hidrolases de Éster Carboxílico/metabolismo , Pectinas/metabolismo , Mucilagem Vegetal/metabolismo , Sementes/metabolismo , Arabidopsis/genética , Arabidopsis/ultraestrutura , Proteínas de Arabidopsis/genética , Hidrolases de Éster Carboxílico/genética , DNA Bacteriano/genética , Esterificação , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Mutagênese Insercional , Mutação/genética , Fenótipo , Mucilagem Vegetal/ultraestrutura , Regiões Promotoras Genéticas/genética , Sementes/genética , Sementes/crescimento & desenvolvimento , Sementes/ultraestrutura
8.
BMC Plant Biol ; 13: 159, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-24128060

RESUMO

BACKGROUND: Flax (Linum usitatissimum L.) is an economically important fiber and oil crop that has been grown for thousands of years. The genome has been recently sequenced and transcriptomics are providing information on candidate genes potentially related to agronomically-important traits. In order to accelerate functional characterization of these genes we have generated a flax EMS mutant population that can be used as a TILLinG (Targeting Induced Local Lesions in Genomes) platform for forward and reverse genetics. RESULTS: A population of 4,894 M2 mutant seed families was generated using 3 different EMS concentrations (0.3%, 0.6% and 0.75%) and used to produce M2 plants for subsequent phenotyping and DNA extraction. 10,839 viable M2 plants (4,033 families) were obtained and 1,552 families (38.5%) showed a visual developmental phenotype (stem size and diameter, plant architecture, flower-related). The majority of these families showed more than one phenotype. Mutant phenotype data are organised in a database and can be accessed and searched at UTILLdb (http://urgv.evry.inra.fr/UTILLdb). Preliminary screens were also performed for atypical fiber and seed phenotypes. Genomic DNA was extracted from 3,515 M2 families and eight-fold pooled for subsequent mutant detection by ENDO1 nuclease mis-match cleavage. In order to validate the collection for reverse genetics, DNA pools were screened for two genes coding enzymes of the lignin biosynthesis pathway: Coumarate-3-Hydroxylase (C3H) and Cinnamyl Alcohol Dehydrogenase (CAD). We identified 79 and 76 mutations in the C3H and CAD genes, respectively. The average mutation rate was calculated as 1/41 Kb giving rise to approximately 9,000 mutations per genome. Thirty-five out of the 52 flax cad mutant families containing missense or codon stop mutations showed the typical orange-brown xylem phenotype observed in CAD down-regulated/mutant plants in other species. CONCLUSIONS: We have developed a flax mutant population that can be used as an efficient forward and reverse genetics tool. The collection has an extremely high mutation rate that enables the detection of large numbers of independant mutant families by screening a comparatively low number of M2 families. The population will prove to be a valuable resource for both fundamental research and the identification of agronomically-important genes for crop improvement in flax.


Assuntos
Linho/genética , Genoma de Planta/genética , Mutagênese/genética , Mutação/genética , Genética Reversa/métodos , Pareamento de Bases/genética , Metanossulfonato de Etila , Flores/genética , Genes de Plantas/genética , Genótipo , Lignina/genética , Taxa de Mutação , Motivos de Nucleotídeos/genética , Fenótipo , Filogenia , Sementes/genética
9.
New Phytol ; 192(1): 114-126, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21692803

RESUMO

• Here, we focused on the biochemical characterization of the Arabidopsis thaliana pectin methylesterase 3 gene (AtPME3; At3g14310) and its role in plant development. • A combination of biochemical, gene expression, Fourier transform-infrared (FT-IR) microspectroscopy and reverse genetics approaches were used. • We showed that AtPME3 is ubiquitously expressed in A. thaliana, particularly in vascular tissues. In cell wall-enriched fractions, only the mature part of the protein was identified, suggesting that it is processed before targeting the cell wall. In all the organs tested, PME activity was reduced in the atpme3-1 mutant compared with the wild type. This was related to the disappearance of an activity band corresponding to a pI of 9.6 revealed by a zymogram. Analysis of the cell wall composition showed that the degree of methylesterification (DM) of galacturonic acids was affected in the atpme3-1 mutant. A change in the number of adventitious roots was found in the mutant, which correlated with the expression of the gene in adventitious root primordia. • Our results enable the characterization of AtPME3 as a major basic PME isoform in A. thaliana and highlight its role in adventitious rooting.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Arabidopsis/crescimento & desenvolvimento , Hidrolases de Éster Carboxílico/metabolismo , Raízes de Plantas/enzimologia , Raízes de Plantas/crescimento & desenvolvimento , Sequência de Aminoácidos , Proteínas de Arabidopsis/química , Hidrolases de Éster Carboxílico/química , Parede Celular/enzimologia , Ativação Enzimática , Esterificação , Isoenzimas/química , Isoenzimas/metabolismo , Dados de Sequência Molecular , Mutação/genética , Pectinas/metabolismo , Fenótipo , Feixe Vascular de Plantas/enzimologia , Regiões Promotoras Genéticas/genética , Transporte Proteico
10.
BMC Genomics ; 11: 592, 2010 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-20964859

RESUMO

BACKGROUND: Flax (Linum usitatissimum L.) has been cultivated for around 9,000 years and is therefore one of the oldest cultivated species. Today, flax is still grown for its oil (oil-flax or linseed cultivars) and its cellulose-rich fibres (fibre-flax cultivars) used for high-value linen garments and composite materials. Despite the wide industrial use of flax-derived products, and our actual understanding of the regulation of both wood fibre production and oil biosynthesis more information must be acquired in both domains. Recent advances in genomics are now providing opportunities to improve our fundamental knowledge of these complex processes. In this paper we report the development and validation of a high-density oligo microarray platform dedicated to gene expression analyses in flax. RESULTS: Nine different RNA samples obtained from flax inner- and outer-stems, seeds, leaves and roots were used to generate a collection of 1,066,481 ESTs by massive parallel pyrosequencing. Sequences were assembled into 59,626 unigenes and 48,021 sequences were selected for oligo design and high-density microarray (Nimblegen 385K) fabrication with eight, non-overlapping 25-mers oligos per unigene. 18 independent experiments were used to evaluate the hybridization quality, precision, specificity and accuracy and all results confirmed the high technical quality of our microarray platform. Cross-validation of microarray data was carried out using quantitative qRT-PCR. Nine target genes were selected on the basis of microarray results and reflected the whole range of fold change (both up-regulated and down-regulated genes in different samples). A statistically significant positive correlation was obtained comparing expression levels for each target gene across all biological replicates both in qRT-PCR and microarray results. Further experiments illustrated the capacity of our arrays to detect differential gene expression in a variety of flax tissues as well as between two contrasted flax varieties. CONCLUSION: All results suggest that our high-density flax oligo-microarray platform can be used as a very sensitive tool for analyzing gene expression in a large variety of tissues as well as in different cultivars. Moreover, this highly reliable platform can also be used for the quantification of mRNA transcriptional profiling in different flax tissues.


Assuntos
Linho/genética , Regulação da Expressão Gênica de Plantas , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Mapeamento de Sequências Contíguas , Linho/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Genes de Plantas/genética , Genótipo , Anotação de Sequência Molecular , Especificidade de Órgãos/genética , Caules de Planta/genética , Análise de Componente Principal , Reprodutibilidade dos Testes , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA
11.
J Exp Bot ; 60(2): 487-93, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19264760

RESUMO

Quantitative RT-PCR (reverse transcription polymerase chain reaction, also known as qRT-PCR or real-time RT-PCR) has been used in large proportions of transcriptome analyses published to date. The accuracy of the results obtained by this method strongly depends on accurate transcript normalization using stably expressed genes, known as references. Statistical algorithms have been developed recently to help validate reference genes but, surprisingly, this robust approach is under-utilized in plants. Instead, putative 'housekeeping' genes tend to be used as references without any proper validation. The concept of normalization in transcript quantification is introduced here and the factors affecting its reliability in qRT-PCR are discussed in an attempt to convince molecular biologists, and non-specialists, that systematic validation of reference genes is essential for producing accurate, reliable data in qRT-PCR analyses, and thus should be an integral component of them.


Assuntos
Reação em Cadeia da Polimerase Via Transcriptase Reversa/normas , Northern Blotting , Análise de Sequência com Séries de Oligonucleotídeos , Padrões de Referência , Reprodutibilidade dos Testes
13.
Plant Biotechnol J ; 6(6): 609-18, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18433420

RESUMO

Reverse transcription-polymerase chain reaction (RT-PCR) approaches have been used in a large proportion of transcriptome analyses published to date. The accuracy of the results obtained by this method strongly depends on accurate transcript normalization using stably expressed genes, known as references. Statistical algorithms have been developed recently to help validate reference genes, and most studies of gene expression in mammals, yeast and bacteria now include such validation. Surprisingly, this important approach is under-utilized in plant studies, where putative housekeeping genes tend to be used as references without any appropriate validation. Using quantitative RT-PCR, the expression stability of several genes commonly used as references was tested in various tissues of Arabidopsis thaliana and hybrid aspen (Populus tremula x Populus tremuloides). It was found that the expression of most of these genes was unstable, indicating that their use as references is inappropriate. The major impact of the use of such inappropriate references on the results obtained by RT-PCR is demonstrated in this study. Using aspen as a model, evidence is presented indicating that no gene can act as a universal reference, implying the need for a systematic validation of reference genes. For the first time, the extent to which the lack of a systematic validation of reference genes is a stumbling block to the reliability of results obtained by RT-PCR in plants is clearly shown.


Assuntos
Perfilação da Expressão Gênica , Genes de Plantas/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Arabidopsis/genética , Populus/genética , Reprodutibilidade dos Testes
14.
Trends Plant Sci ; 12(7): 294-300, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17588801

RESUMO

Seed maturation is an important phase of seed development during which embryo growth ceases, storage products accumulate, the protective tegument differentiates and tolerance to desiccation develops, leading to seed dormancy. The spatial and temporal regulation of all these processes requires the concerted action of several signaling pathways that integrate information from genetic programs, and both hormonal and metabolic signals. Recent genetic studies have identified some of the interactions that occur between four master regulators in Arabidopsis, increasing our knowledge of the control of the transcriptional program involved in seed maturation. Moreover, several recent breakthroughs have led to a better understanding of the role of abscisic acid signal modulation and the importance of metabolic regulation in the maternal to filial switch leading to the maturation phase.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Ácido Abscísico/metabolismo , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Genes de Plantas
15.
J Exp Bot ; 57(9): 1919-32, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16606634

RESUMO

A cDNA-AFLP approach on Linum usitatissimum (flax) was used to identify genes specifically expressed during the seed maturation process. Among the 20,000 cDNA-AFLP tags produced, 486 were selected for their seed-specific expression during maturation. When compared with the publicly available databases, half of them presented some significant similarity with known plant sequences. The results obtained confirmed the accuracy of the approach as numerous genes previously described as being expressed exclusively in plant seeds were identified in this screen. The focus was on sequences similar to plant regulators involved in the control of gene expression, either at the transcriptional, post-transcriptional, or post-translational levels. Using a real-time RT-PCR approach, seed-specific expression kinetics were confirmed for 13 of these regulators that were never characterized for being expressed during seed maturation. Among these, a flax gene of the non-LEC1-like HAP3 family and a flax MYB factor were shown to be expressed in specialized tissues of flax embryo using an in situ hybridization approach. By expression kinetic comparison between these flax genes and their Arabidopsis counterparts, it was found that the new HAP3 gene should be related to a ubiquitous seed maturation mechanism, while a new MYB factor appears to be related to a more seed-specific maturation mechanism. These results demonstrate the utility of the flax database in not only identifying new genes expressed during seed maturation but also in being able to highlight the distinction between conserved and non-conserved seed maturation mechanisms.


Assuntos
Linho/fisiologia , Regulação da Expressão Gênica de Plantas , Sementes/crescimento & desenvolvimento , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , DNA Complementar , DNA de Plantas , Etiquetas de Sequências Expressas , Linho/genética , Linho/crescimento & desenvolvimento , Hibridização In Situ , Microscopia Confocal , Proteínas de Plantas/metabolismo , Proteínas de Plantas/fisiologia , Polimorfismo de Fragmento de Restrição , Modificação Traducional de Proteínas , Processamento Pós-Transcricional do RNA , RNA de Plantas/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sementes/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/fisiologia
16.
Transgenic Res ; 14(1): 57-67, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15865049

RESUMO

With the aim of producing insect-resistant potato plants, internode explants of Solanum tuberosum L. cv. Désirée were transformed with an Agrobacterium strain C58pMP90 containing an insect (Phaedon cochleariae: Coleoptera, Chrysomelidae) chitinase gene and the neomycin phosphotransferase (nptII) gene as selectable marker, both under the control of the viral CaMV 35S promoter. Three transformed potato lines (CH3, CH5 and CH25) exhibiting the highest chitinolytic activities were selected for feeding experiments with the peach-potato aphid, Myzus persicae (Sulzer), under controlled photoperiod and temperature conditions. Aphids fed on transgenic potato plants showed a reduced pre-reproductive period and an enhanced daily fecundity. Transgenic potato lines did not affect nymphal mortality, but improved several biological parameters related to aphid population's growth. Artificial diets were used to provide active (1, 10, 100 and 500 microg ml(-1)) and inactive (500 microg ml(-1)) bacterial (Serratia marcescens) chitinase to M. persicae. These compounds increased nymph survival at all active chitinase doses when compared to the control diet, while inactive chitinase did not. Although the pre-reproductive period was slightly shortened and the daily fecundity slightly higher, active and inactive chitinase provided as food led a reduction from 1 to 1.5 day population's doubling time. Therefore chitinase activity was responsible for the probiotic effects on aphids. Our results question the relevance of a chitinase-based strategy in the context of potato culture protection.


Assuntos
Afídeos/patogenicidade , Quitinases/farmacologia , Plantas Geneticamente Modificadas/genética , Solanum tuberosum/genética , Animais , Sequência de Bases , Northern Blotting , Quitinases/administração & dosagem , Quitinases/genética , Primers do DNA , Reação em Cadeia da Polimerase , Prunus/parasitologia , Solanum tuberosum/parasitologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...