Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Inorg Chem ; 54(22): 10701-10, 2015 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-26540517

RESUMO

A combined theoretical and experimental study is performed in order to elucidate the effects of linker functional groups on the photoabsorption properties of UiO-66-X materials. This study, in which both mono- and difunctionalized linkers (with X = OH, NH2, or SH) are investigated, aims to obtain a more complete picture of the choice of functionalization. Static time-dependent density functional theory calculations combined with molecular dynamics simulations are performed on the linkers, and the results are compared to experimental UV/vis spectra in order to understand the electronic effects governing the absorption spectra. The disubstituted linkers show larger shifts than the monosubstituted variants, making them promising candidates for further study as photocatalysts. Next, the interaction between the linker and the inorganic part of the framework is theoretically investigated using a cluster model. The proposed ligand-to-metal-charge transfer is theoretically observed and is influenced by the differences in functionalization. Finally, the computed electronic properties of the periodic UiO-66 materials reveal that the band gap can be altered by linker functionalization and ranges from 4.0 down to 2.2 eV. Study of the periodic density of states allows the band gap modulations of the framework to be explained in terms of a functionalization-induced band in the band gap of the original UiO-66 host.

2.
Phys Chem Chem Phys ; 16(32): 17196-205, 2014 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-25012493

RESUMO

As the chemical structures of radiation damaged molecules may differ greatly from their undamaged counterparts, investigation and description of radiation damaged structures is commonly biased by the researcher. Radical formation from ionizing radiation in crystalline α-l-rhamnose monohydrate has been investigated using a new method where the selection of radical structures is unbiased by the researcher. The method is based on using ab initio molecular dynamics (MD) studies to investigate how ionization damage can form, change and move. Diversity in the radical production is gained by using different points on the potential energy surface of the intact crystal as starting points for the ionizations and letting the initial velocities of the nuclei after ionization be generated randomly. 160 ab initio MD runs produced 12 unique radical structures for investigation. Out of these, 7 of the potential products have never previously been discussed, and 3 products are found to match with radicals previously observed by electron magnetic resonance experiments.

3.
J Chem Phys ; 140(13): 134105, 2014 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-24712778

RESUMO

A Fourier-based method is presented to relate changes of the molecular structure during a molecular dynamics simulation with fluctuations in the electronic excitation energy. The method implies sampling of the ground state potential energy surface. Subsequently, the power spectrum of the velocities is compared with the power spectrum of the excitation energy computed using time-dependent density functional theory. Peaks in both spectra are compared, and motions exhibiting a linear or quadratic behavior can be distinguished. The quadratically active motions are mainly responsible for the changes in the excitation energy and hence cause shifts between the dynamic and static values of the spectral property. Moreover, information about the potential energy surface of various excited states can be obtained. The procedure is illustrated with three case studies. The first electronic excitation is explored in detail and dominant vibrational motions responsible for changes in the excitation energy are identified for ethylene, biphenyl, and hexamethylbenzene. The proposed method is also extended to other low-energy excitations. Finally, the vibrational fingerprint of the excitation energy of a more complex molecule, in particular the azo dye ethyl orange in a water environment, is analyzed.

4.
Chem Commun (Camb) ; 49(73): 8021-3, 2013 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-23903063

RESUMO

An enantioselective catalyst, consisting of a chiral Mn(III)salen complex entrapped in the MIL-101 metal organic framework, is reported. For the first time, we assemble a robust MOF-cage around a chiral complex. The heterogeneous catalyst shows the same selectivity as the homogeneous complex and is fully recyclable. Theoretical calculations provide insight into this retention of selectivity.

5.
J Phys Chem B ; 117(24): 7169-78, 2013 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-23705799

RESUMO

Ionizing radiation induces a composite, multiline electron paramagnetic resonance (EPR) spectrum in sucrose, that is stable at room temperature and whose intensity is indicative of the radiation dose. Recently, the three radicals which dominate this spectrum were identified and their proton hyperfine tensors were accurately determined. Understanding the powder EPR spectrum of irradiated sucrose, however, also requires an accurate knowledge of the g tensors of these radicals. We extracted these tensors from angular dependent electron nuclear double resonance-induced EPR measurements at 110 K and 34 GHz. Powder spectrum simulations using this completed set of spin Hamiltonian parameters are in good agreement with experimentally recorded spectra in a wide temperature and frequency range. However, as-yet nonidentified radicals also contribute to the EPR spectra of irradiated sucrose in a non-negligible way.


Assuntos
Sacarose/química , Configuração de Carboidratos , Espectroscopia de Ressonância de Spin Eletrônica , Radicais Livres/química , Teoria Quântica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...