Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Opt ; 60(25): G64-G76, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34613196

RESUMO

This two-part paper demonstrates the use of wave-optics simulations to model the effects of dynamic speckle. In Part I, we formulate closed-form expressions for the analytical irradiance correlation coefficient, specifically in the pupil plane of an optical system. These expressions are for square, circular, and Gaussian scattering spots and four different modes of extended-object motion, including in-plane and out-of-plane translation and rotation. Using a phase-screen approach, we then simulate the equivalent scattering from an optically rough extended object, where we assume that the surface heights are uniformly distributed and delta correlated from grid point to grid point. For comparison to the analytical irradiance correlation coefficient, we also calculate the numerical irradiance correlation coefficient from the dynamic speckle after propagation from the simulated object plane to the simulated pupil plane. Overall, the analytical and numerical results definitely demonstrate that, relative to theory, the dynamic speckle in the simulated pupil plane is properly correlated from one frame to the next. Such validated wave-optics simulations provide the framework needed to model more sophisticated setups and obtain accurate results for system-level studies.

2.
Appl Opt ; 60(25): G77-G90, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34613197

RESUMO

This two-part paper demonstrates the use of wave-optics simulations to model the effects of dynamic speckle. In Part II, we formulate closed-form expressions for the analytical irradiance correlation coefficient, specifically in the image plane of an optical system. These expressions are for square, circular, and Gaussian limiting apertures and four different modes of extended-object motion, including in-plane and out-of-plane translation and rotation. Using a phase-screen approach, we then simulate the equivalent scattering from an optically rough extended object, where we assume that the surface heights are uniformly distributed and delta correlated from grid point to grid point. For comparison to the analytical irradiance correlation coefficient, we also calculate the numerical irradiance correlation coefficient from the dynamic speckle after propagation from the simulated object plane to the simulated image plane. Overall, the analytical and numerical results definitely demonstrate that, relative to theory, the dynamic speckle in the simulated image plane is properly correlated from one frame to the next. Such validated wave-optics simulations provide the framework needed to model more sophisticated setups and obtain accurate results for system-level studies.

3.
Appl Opt ; 59(4): 1071-1081, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-32225243

RESUMO

Adaptive-optics (AO) systems correct the optical distortions of atmospheric turbulence to improve resolution over long paths. In applications such as remote sensing, object tracking, and directed energy, the AO system's beacon is often an extended beacon reflecting off an optically rough surface. This situation produces speckle noise that can corrupt the wavefront measurements of the AO system, degrading its correction of the turbulence. This work studies the benefits of speckle mitigation via polychromatic illumination. To quantify the benefits over a wide range of conditions, this work uses a numerical wave-optics model with the split-step method for turbulence and the spectral-slicing method for polychromatic light. It assumes an AO system based on a Shack-Hartmann wavefront sensor. In addition, it includes realistic values for turbulence strength, turbulence distribution along the path, coherence length, extended-beacon size, and object motion. The results show that polychromatic speckle mitigation significantly improves AO system performance, increasing the Strehl ratio by 180% (from 0.10 to 0.28) in one case.

4.
Appl Opt ; 58(9): 2300-2310, 2019 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-31044924

RESUMO

When measuring atmospheric turbulence along the propagation path to an extended non-cooperative target, a wavefront sensor normally suffers from severe noise due to speckle. In this work, we quantify the benefits of speckle mitigation via polychromatic illumination for a Shack-Hartmann wavefront sensor. We obtain results over a wide range of conditions by using the spectral-slicing approach to polychromatic wave-optics simulations. To quantify speckle noise, even when turbulence is present, we introduce a metric involving racetrack-mode strength in slope-discrepancy space. The results show that polychromatic illumination greatly reduces speckle noise under realistic conditions. Even with near worst-case conditions, 15 coherence lengths per resolution cell reduce the wavefront-measurement error by 56%.

5.
Appl Opt ; 57(15): 4090-4102, 2018 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-29791382

RESUMO

Polychromatic laser light can reduce speckle noise in wavefront-sensing and imaging applications that use direct-detection schemes. To help quantify the achievable reduction in speckle, this paper investigates the accuracy and numerical efficiency of three separate wave-optics methods. Each method simulates the active illumination of extended objects with polychromatic laser light. In turn, this paper uses the Monte Carlo method, the depth-slicing method, and the spectral-slicing method, respectively, to simulate the laser-object interaction. The limitations and sampling requirements of all three methods are discussed. Further, the numerical efficiencies of the methods are compared over a range of conditions. The Monte Carlo method is found to be the most efficient, while spectral slicing is more efficient than depth slicing for well-resolved objects. Finally, Hu's theory is used to quantify method accuracy when possible (i.e., for well-resolved objects). In general, the theory compares favorably to the simulation methods.

6.
Appl Opt ; 57(15): 4103-4110, 2018 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-29791383

RESUMO

Polychromatic laser light can reduce speckle noise in many wavefront-sensing and imaging applications. To help quantify the achievable reduction in speckle noise, this study investigates the accuracy of three polychromatic wave-optics models under the specific conditions of an unresolved object. Because existing theory assumes a well-resolved object, laboratory experiments are used to evaluate model accuracy. The three models use Monte-Carlo averaging, depth slicing, and spectral slicing, respectively, to simulate the laser-object interaction. The experiments involve spoiling the temporal coherence of laser light via a fiber-based, electro-optic modulator. After the light scatters off of the rough object, speckle statistics are measured. The Monte-Carlo method is found to be highly inaccurate, while depth-slicing error peaks at 7.8% but is generally much lower in comparison. The spectral-slicing method is the most accurate, always producing results within the error bounds of the experiment.

7.
Opt Express ; 21(12): 14789-98, 2013 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-23787666

RESUMO

A new scaling law model is presented to rapidly simulate thermal blooming and turbulence effects on high energy laser propagation, producing results approaching the quality normally only available using wave-optics code, but at much faster speed. The model convolves irradiance patterns originating from two distinct scaling law models, one with a proficiency in thermal blooming effects and the other in turbulence. To underscore the power of the new model, results are verified for typical, realistic scenarios by direct comparison with wave optics simulation.


Assuntos
Desenho Assistido por Computador , Lasers , Luz , Modelos Teóricos , Dinâmica não Linear , Espalhamento de Radiação , Simulação por Computador , Transferência de Energia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...