Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Plants ; 4(7): 473-484, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29892093

RESUMO

Rose is the world's most important ornamental plant, with economic, cultural and symbolic value. Roses are cultivated worldwide and sold as garden roses, cut flowers and potted plants. Roses are outbred and can have various ploidy levels. Our objectives were to develop a high-quality reference genome sequence for the genus Rosa by sequencing a doubled haploid, combining long and short reads, and anchoring to a high-density genetic map, and to study the genome structure and genetic basis of major ornamental traits. We produced a doubled haploid rose line ('HapOB') from Rosa chinensis 'Old Blush' and generated a rose genome assembly anchored to seven pseudo-chromosomes (512 Mb with N50 of 3.4 Mb and 564 contigs). The length of 512 Mb represents 90.1-96.1% of the estimated haploid genome size of rose. Of the assembly, 95% is contained in only 196 contigs. The anchoring was validated using high-density diploid and tetraploid genetic maps. We delineated hallmark chromosomal features, including the pericentromeric regions, through annotation of transposable element families and positioned centromeric repeats using fluorescent in situ hybridization. The rose genome displays extensive synteny with the Fragaria vesca genome, and we delineated only two major rearrangements. Genetic diversity was analysed using resequencing data of seven diploid and one tetraploid Rosa species selected from various sections of the genus. Combining genetic and genomic approaches, we identified potential genetic regulators of key ornamental traits, including prickle density and the number of flower petals. A rose APETALA2/TOE homologue is proposed to be the major regulator of petal number in rose. This reference sequence is an important resource for studying polyploidization, meiosis and developmental processes, as we demonstrated for flower and prickle development. It will also accelerate breeding through the development of molecular markers linked to traits, the identification of the genes underlying them and the exploitation of synteny across Rosaceae.


Assuntos
Genoma de Planta/genética , Rosa/genética , Centrômero/genética , Cromossomos de Plantas/genética , Flores/anatomia & histologia , Flores/genética , Fragaria/genética , Variação Genética/genética , Haploidia , Hibridização in Situ Fluorescente , Filogenia , Locos de Características Quantitativas/genética , Característica Quantitativa Herdável , Rosa/anatomia & histologia , Análise de Sequência de DNA , Sintenia/genética
2.
Theor Appl Genet ; 126(1): 59-68, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22907632

RESUMO

Phytophthora infestans, the causal agent of late blight, remains the main threat to potato production worldwide. Screening of 19 accessions of Solanum dulcamara with P. infestans isolate Ipo82001 in detached leaf assays revealed strong resistance in an individual belonging to accession A54750069-1. This plant was crossed with a susceptible genotype, and an F(1) population consisting of 63 individuals was obtained. This population segregated for resistance in 1:1 ratio, both in detached leaf assays and in an open-field experiment. Presence of the formerly mapped Rpi-dlc1 gene as the cause of the observed segregating resistance could be excluded. Subsequently, AFLP analyses using 128 primer combinations enabled identification of five markers linked to a novel resistance gene named Rpi-dlc2. AFLP markers did not show sequence similarity to the tomato and potato genomes, hampering comparative genetic positioning of the gene. For this reason we used next-generation mapping (NGM), an approach that exploits direct sequencing of DNA (in our case: cDNA) pools from bulked segregants to calculate the genetic distance between SNPs and the locus of interest. Plotting of these genetic distances on the tomato and potato genetic map and subsequent PCR-based marker analysis positioned the gene on chromosome 10, in a region overlapping with the Rpi-ber/ber1 and -ber2 loci from S. berthaultii. Pyramiding of Rpi-dlc2 and Rpi-dlc1 significantly increased resistance to P. infestans, compared with individuals containing only one of the genes, showing the usefulness of this strategy to enhance resistance against Phytophthora.


Assuntos
Mapeamento Cromossômico/métodos , Phytophthora infestans/genética , Doenças das Plantas/genética , Folhas de Planta/parasitologia , Solanum/genética , Solanum/parasitologia , DNA Complementar/metabolismo , Evolução Molecular , Marcadores Genéticos/genética , Genômica , Genótipo , Modelos Genéticos , Fenótipo , Doenças das Plantas/parasitologia , Reação em Cadeia da Polimerase/métodos , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...