Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 11: 1325, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32625192

RESUMO

Animal models of Staphylococcus aureus infective endocarditis (IE), especially in rodents, are commonly used to investigate the underlying pathogenesis, disease progression, potential diagnostic approaches, and therapeutic treatment. All these models are based on surgical interventions, and imply valve trauma by placing a polyurethane catheter at the aortic root. While the influence of endothelial damage and inflammation on the induction of IE has been studied intensively, the role of the catheter, as permanent source of bacteremia, and the interplay with bacterial virulence factors during the formation of IE is poorly understood. In our study, we aimed at identifying which set of preconditions is required for induction and formation of IE: (1) tissue injury, (2) permanent presence of bacteria, and (3) presence of the full bacterial repertoire of adhesion proteins. We investigated the manifestation of the disease in different modifications of the animal model, considering different degrees of endothelial damage and the presence or absence of the catheter. In four infection models the induction of IE was assessed by using two bacterial strains with different expression patterns of virulence factors - S. aureus 6850 and Newman. In vivo magnetic resonance imaging showed conspicuous morphological structures on the aortic valves, when an endothelial damage and a continuous bacterial source were present simultaneously. Cellular and inflammatory pathophysiology were characterized additionally by histology, real-time quantitative polymerase chain reaction analysis, and bacterial counts, revealing strain-specific pathogenesis and manifestation of IE, crucially influenced by bacterial adherence and toxicity. The severity of IE was dependent on the degree of endothelial irritation. However, even severe endothelial damage in the absence of a permanent bacterial source resulted in reduced valve infection. The spread of bacteria to other organs was also dependent on the pathogenic profile of the infectious agent.

2.
Bioorg Med Chem ; 27(10): 1997-2018, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30954331

RESUMO

The Zn2+-dependent deacetylase LpxC is an essential enzyme in Gram-negative bacteria, which has been validated as antibacterial drug target. Herein we report the chiral-pool synthesis of novel d- and l-proline-derived 3,4-dihydroxypyrrolidine hydroxamates and compare their antibacterial and LpxC inhibitory activities with the ones of 4-monosubstituted and 3,4-unsubstituted proline derivatives. With potent antibacterial activities against several Gram-negative pathogens, the l-proline-based tertiary amine 41g ((S)-N-hydroxy-1-(4-{[4-(morpholinomethyl)phenyl]ethynyl}benzyl)pyrrolidine-2-carboxamide) was found to be the most active antibacterial compound within the investigated series, also showing some selectivity toward EcLpxC (Ki = 1.4 µM) over several human MMPs.


Assuntos
Amidoidrolases/metabolismo , Antibacterianos/síntese química , Proteínas de Bactérias/metabolismo , Ácidos Hidroxâmicos/química , Prolina/química , Amidoidrolases/química , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Proteínas de Bactérias/química , Sítios de Ligação , Domínio Catalítico , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/enzimologia , Bactérias Gram-Negativas/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Prolina/metabolismo , Relação Estrutura-Atividade , Zinco/química
3.
Int J Med Microbiol ; 308(7): 761-769, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29843979

RESUMO

Staphylococcus aureus is the most frequent pathogen causing diabetic foot infections. Here, we investigated the degree of bacterial virulence required to establish invasive tissue infections in diabetic organisms. Staphylococcal isolates from diabetic and non-diabetic foot ulcers were tested for their virulence in in vitro functional assays of host cell invasion and cytotoxicity. Isolates from diabetes mellitus type I/II patients exhibited less virulence than isolates from non-diabetic patients, but were nevertheless able to establish severe infections. In some cases, non-invasive isolates were detected deep within diabetic wounds, even though the strains were non-pathogenic in cell culture models. Testing of defined isolates in murine footpad injection models revealed that both low- and high-virulent bacterial strains persisted in higher numbers in diabetic compared to non-diabetic hosts, suggesting that hyperglycemia favors bacterial survival. Additionally, the bacterial load was higher in NOD mice, which have a compromised immune system, compared to C57Bl/6 mice. Our results reveal that high as well as low-virulent staphylococcal strains are able to cause soft tissue infections and to persist in diabetic humans and mice, suggesting a reason for the frequent and endangering infections in patients with diabetes.


Assuntos
Carga Bacteriana , Diabetes Mellitus Experimental/patologia , Pé Diabético/microbiologia , Infecções dos Tecidos Moles/microbiologia , Staphylococcus aureus/patogenicidade , Adulto , Idoso , Animais , Células Cultivadas , Células Endoteliais da Veia Umbilical Humana , Humanos , Hiperglicemia/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Pessoa de Meia-Idade , Staphylococcus aureus/isolamento & purificação , Estreptozocina , Virulência
4.
Sci Rep ; 8(1): 2185, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29391581

RESUMO

Globalization and migration promote the spread of Panton-Valentine leukocidin (PVL)-positive Staphylococcus aureus strains. The toxin PVL is linked to the development of thrombosis in association with osteomyelitis. The mechanisms by which PVL drives thrombosis development are however still unknown. We demonstrate that PVL-damaged neutrophils activate platelets via neutrophil secretion products, such as α-defensins and the myeloperoxidase product HOCl, as well as the formation of HOCl-modified proteins. Neutrophil damage by PVL is blocked by anti-PVL-antibodies, explaining why especially young osteomyelitis patients with a low antibody titre against PVL suffer from thrombotic complications. Platelet activation in the presence of PVL-damaged neutrophils is prevented by α-defensin inhibitors and by glutathione and resveratrol, which are both inhibitors of HOCl-modified protein-induced platelet activation. Remarkably, intravenously infused glutathione also prevents activation of human platelets in an ex vivo assay. We here describe a new mechanism of PVL-neutrophil-platelet interactions, which might be extrapolated to other toxins that act on neutrophils. Our observations may make us think about new approaches to treat and/or prevent thrombotic complications in the course of infections with PVL-producing S. aureus strains.


Assuntos
Toxinas Bacterianas/farmacologia , Plaquetas/imunologia , Exotoxinas/farmacologia , Leucocidinas/farmacologia , Neutrófilos/imunologia , Osteomielite/microbiologia , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/patogenicidade , Plaquetas/efeitos dos fármacos , Humanos , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Osteomielite/imunologia , Osteomielite/patologia , Infecções Estafilocócicas/epidemiologia , Staphylococcus aureus/efeitos dos fármacos
5.
Am J Pathol ; 187(2): 268-279, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28088288

RESUMO

Staphylococcus aureus causes very serious infections of vascular grafts. Knowledge of the molecular mechanisms of this disease is largely lacking because of the absence of representable models. Therefore, the aim of this study was to set up a mouse model of vascular graft infections that closely mimics the human situation. A catheter was inserted into the right carotid artery of mice, which acted as a vascular graft. Mice were infected i.v. using 8 different S. aureus strains, and development of the infection was followed up. Although all strains had varying abilities to form biofilm in vitro and different levels of virulence in mice, they all caused biofilm formation on the grafts. This graft infection was monitored using magnetic resonance imaging (MRI) and 18F-fluordeoxyglucose positron emission tomography (FDG-PET). MRI allowed the quantification of blood flow through the arteries, which was decreased in the catheter after infection. FDG-PET revealed high inflammation levels at the site of the catheter after infection. This model closely resembles the situation in patients, which is characterized by a tight interplay between pathogen and host, and can therefore be used for the testing of novel treatment, diagnosis, and prevention strategies. In addition, combining MRI and PET with microscopic techniques provides an appropriate way to characterize the course of these infections and to precisely analyze biofilm development.


Assuntos
Biofilmes/crescimento & desenvolvimento , Infecções Relacionadas a Cateter/diagnóstico por imagem , Modelos Animais de Doenças , Infecções Estafilocócicas/diagnóstico por imagem , Animais , Prótese Vascular/microbiologia , Ensaio de Imunoadsorção Enzimática , Hibridização in Situ Fluorescente , Imageamento por Ressonância Magnética , Camundongos , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Tomografia por Emissão de Pósitrons , Staphylococcus aureus
6.
PLoS Pathog ; 11(4): e1004870, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25923704

RESUMO

Staphylococcus aureus is a major human pathogen that causes a range of infections from acute invasive to chronic and difficult-to-treat. Infection strategies associated with persisting S. aureus infections are bacterial host cell invasion and the bacterial ability to dynamically change phenotypes from the aggressive wild-type to small colony variants (SCVs), which are adapted for intracellular long-term persistence. The underlying mechanisms of the bacterial switching and adaptation mechanisms appear to be very dynamic, but are largely unknown. Here, we analyzed the role and the crosstalk of the global S. aureus regulators agr, sarA and SigB by generating single, double and triple mutants, and testing them with proteome analysis and in different in vitro and in vivo infection models. We were able to demonstrate that SigB is the crucial factor for adaptation in chronic infections. During acute infection, the bacteria require the simultaneous action of the agr and sarA loci to defend against invading immune cells by causing inflammation and cytotoxicity and to escape from phagosomes in their host cells that enable them to settle an infection at high bacterial density. To persist intracellularly the bacteria subsequently need to silence agr and sarA. Indeed agr and sarA deletion mutants expressed a much lower number of virulence factors and could persist at high numbers intracellularly. SigB plays a crucial function to promote bacterial intracellular persistence. In fact, ΔsigB-mutants did not generate SCVs and were completely cleared by the host cells within a few days. In this study we identified SigB as an essential factor that enables the bacteria to switch from the highly aggressive phenotype that settles an acute infection to a silent SCV-phenotype that allows for long-term intracellular persistence. Consequently, the SigB-operon represents a possible target to develop preventive and therapeutic strategies against chronic and therapy-refractory infections.


Assuntos
Proteínas de Bactérias/metabolismo , Endotélio Vascular/microbiologia , Interações Hospedeiro-Patógeno , Neutrófilos/microbiologia , Osteoblastos/microbiologia , Fator sigma/metabolismo , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/fisiologia , Adaptação Fisiológica , Animais , Proteínas de Bactérias/genética , Linhagem Celular , Células Cultivadas , Endotélio Vascular/citologia , Endotélio Vascular/imunologia , Endotélio Vascular/patologia , Deleção de Genes , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/imunologia , Células Endoteliais da Veia Umbilical Humana/microbiologia , Células Endoteliais da Veia Umbilical Humana/patologia , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Mutação , Neutrófilos/citologia , Neutrófilos/imunologia , Neutrófilos/patologia , Osteoblastos/citologia , Osteoblastos/imunologia , Osteoblastos/patologia , Proteômica , Fator sigma/genética , Infecções Estafilocócicas/imunologia , Infecções Estafilocócicas/metabolismo , Infecções Estafilocócicas/patologia , Staphylococcus aureus/imunologia , Staphylococcus aureus/metabolismo , Fatores de Tempo , Transativadores/genética , Transativadores/metabolismo
7.
PLoS Negl Trop Dis ; 8(8): e3054, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25144573

RESUMO

BACKGROUND: Genetic engineering with luciferase reporter genes allows monitoring Trypanosoma brucei (T.b.) infections in mice by in vivo bioluminescence imaging (BLI). Until recently, luminescent T.b. models were based on Renilla luciferase (RLuc) activity. Our study aimed at evaluating red-shifted luciferases for in vivo BLI in a set of diverse T.b. strains of all three subspecies, including some recently isolated from human patients. METHODOLOGY/PRINCIPAL FINDINGS: We transfected T.b. brucei, T.b. rhodesiense and T.b. gambiense strains with either RLuc, click beetle red (CBR) or Photinus pyralis RE9 (PpyRE9) luciferase and characterised their in vitro luciferase activity, growth profile and drug sensitivity, and their potential for in vivo BLI. Compared to RLuc, the red-shifted luciferases, CBR and PpyRE9, allow tracking of T.b. brucei AnTaR 1 trypanosomes with higher details on tissue distribution, and PpyRE9 allows detection of the parasites with a sensitivity of at least one order of magnitude higher than CBR luciferase. With CBR-tagged T.b. gambiense LiTaR1, T.b. rhodesiense RUMPHI and T.b. gambiense 348 BT in an acute, subacute and chronic infection model respectively, we observed differences in parasite tropism for murine tissues during in vivo BLI. Ex vivo BLI on the brain confirmed central nervous system infection by all luminescent strains of T.b. brucei AnTaR 1, T.b. rhodesiense RUMPHI and T.b. gambiense 348 BT. CONCLUSIONS/SIGNIFICANCE: We established a genetically and phenotypically diverse collection of bioluminescent T.b. brucei, T.b. gambiense and T.b. rhodesiense strains, including drug resistant strains. For in vivo BLI monitoring of murine infections, we recommend trypanosome strains transfected with red-shifted luciferase reporter genes, such as CBR and PpyRE9. Red-shifted luciferases can be detected with a higher sensitivity in vivo and at the same time they improve the spatial resolution of the parasites in the entire body due to the better kinetics of their substrate D-luciferin.


Assuntos
Medições Luminescentes , Trypanosoma brucei brucei/isolamento & purificação , Tripanossomíase Africana/diagnóstico , Animais , Encéfalo/parasitologia , Modelos Animais de Doenças , Feminino , Luciferases/genética , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...