Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Ecotechnol ; 16: 100277, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37206314

RESUMO

Sustainable water management is essential to guaranteeing access to safe water and addressing the challenges posed by climate change, urbanization, and population growth. In a typical household, greywater, which includes everything but toilet waste, constitutes 50-80% of daily wastewater generation and is characterized by low organic strength and high volume. This can be an issue for large urban wastewater treatment plants designed for high-strength operations. Segregation of greywater at the source for decentralized wastewater treatment is therefore necessary for its proper management using separate treatment strategies. Greywater reuse may thus lead to increased resilience and adaptability of local water systems, reduction in transport costs, and achievement of fit-for-purpose reuse. After covering greywater characteristics, we present an overview of existing and upcoming technologies for greywater treatment. Biological treatment technologies, such as nature-based technologies, biofilm technologies, and membrane bioreactors (MBR), conjugate with physicochemical treatment methods, such as membrane filtration, sorption and ion exchange technologies, and ultraviolet (UV) disinfection, may be able to produce treated water within the allowable parameters for reuse. We also provide a novel way to tackle challenges like the demographic variance of greywater quality, lack of a legal framework for greywater management, monitoring and control systems, and the consumer perspective on greywater reuse. Finally, benefits, such as the potential water and energy savings and sustainable future of greywater reuse in an urban context, are discussed.

2.
Environ Sci Ecotechnol ; 10: 100148, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36159733

RESUMO

Water management in most of the developed world is currently practiced in a highly centralized manner, leading to major infrastructure and energy costs to transport water. To decrease the impacts of water scarcity and climate change, the decentralization of water can increase local robustness. In extremis, decentralization can involve building or house level water supply and treatment. Here, we constructed a MATLAB/Simulink model for two decentralized water management configurations at the household level, assuming the socio-environmental setting of Flanders, Belgium. Independence from the potable water grid and sewer system was pursued through rainwater harvesting, reuse of wastewater streams fit-for-purpose, and discharge via infiltration. The mass balance for water was calculated over the system boundaries showing high potential for independence from the grid with a reasonable treatment train and storage options. Next, the risk of contaminant accumulation within the circular system was assessed, showing a key limitation on decentralized system performance necessitating a system purge. Up to 59% of system rainwater usage was due to the replacement of this purge. Employing treatment units with high (95%) contaminant rejection efficiencies eliminated contaminant accumulation issues. The raw model output was quantitatively assessed by constructing four newly proposed key performance indicators (KPIs), quantifying system independence, circularity, drought tolerance and local water body recharge, which allowed for facilitated system comparison and communication to stakeholders. A sensitivity analysis was performed in which the effect of input parameter variability and uncertainty on system performance was quantified. The sensitivity analysis showed the importance of water recovery and contaminant removal efficiencies of the applied treatment technologies on system performance when contaminant accumulation in the system forms an issue. In systems not severely affected by pollutant accumulation, parameters such as inhabitant number and roof surface had the largest effect. As a whole, this work shows the potential of extreme decentralization of water systems and addresses the obstacle towards implementation formed by the accumulation of contaminants due to system circularity. Additionally, this study provides a framework for operational and technological decision support of decentralized household-scale water systems and, by extension, for future water policy-making.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...