Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Lab Chip ; 23(19): 4276-4286, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37668159

RESUMO

Current single-cell technologies require large and expensive equipment, limiting their use to specialized labs. In this paper, we present for the first time a microfluidic device which demonstrates a combined method for full-electric cell capturing, analyzing, and selectively releasing with single-cell resolution. All functionalities are experimentally demonstrated on Saccharomyces cerevisiae. Our microfluidic platform consists of traps centered around a pair of individually accessible coplanar electrodes, positioned under a microfluidic channel. Using this device, we validate our novel Two-Voltage method for trapping single cells by positive dielectrophoresis (pDEP). Cells are attracted to the trap when a high voltage (VH) is applied. A low voltage (VL) holds the already trapped cell in place without attracting additional cells, allowing full control over the number of trapped cells. After trapping, the cells are analyzed by broadband electrochemical impedance spectroscopy. These measurements allow the detection of single cells and the extraction of cell parameters. Additionally, these measurements show a strong correlation between average phase change and cell size, enabling the use of our system for size measurements in biological applications. Finally, our device allows selectively releasing trapped cells by turning off the pDEP signal in their trap. The experimental results show the techniques potential as a full-electric single-cell analysis tool with potential for miniaturization and automation which opens new avenues towards small-scale, high throughput single-cell analysis and sorting lab-on-CMOS devices.


Assuntos
Espectroscopia Dielétrica , Microfluídica , Automação , Movimento Celular , Tamanho Celular , Saccharomyces cerevisiae
2.
Front Microbiol ; 14: 1233705, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37692384

RESUMO

New techniques are revolutionizing single-cell research, allowing us to study microbes at unprecedented scales and in unparalleled depth. This review highlights the state-of-the-art technologies in single-cell analysis in microbial ecology applications, with particular attention to both optical tools, i.e., specialized use of flow cytometry and Raman spectroscopy and emerging electrical techniques. The objectives of this review include showcasing the diversity of single-cell optical approaches for studying microbiological phenomena, highlighting successful applications in understanding microbial systems, discussing emerging techniques, and encouraging the combination of established and novel approaches to address research questions. The review aims to answer key questions such as how single-cell approaches have advanced our understanding of individual and interacting cells, how they have been used to study uncultured microbes, which new analysis tools will become widespread, and how they contribute to our knowledge of ecological interactions.

3.
ACS Omega ; 5(10): 5219-5228, 2020 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-32201810

RESUMO

On-chip micro-supercapacitors (MSCs), integrated with energy harvesters, hold substantial promise for developing self-powered wireless sensor systems. However, MSCs have conventionally been manufactured through techniques incompatible with semiconductor fabrication technology, the most significant bottleneck being the electrode deposition technique. Utilization of spin-coating for electrode deposition has shown potential to deliver several complementary metal-oxide-semiconductor (CMOS)-compatible MSCs on a silicon substrate. Yet, their limited electrochemical performance and yield over the substrate have remained challenges obstructing their subsequent integration. We report a facile surface roughening technique for improving the wafer yield and the electrochemical performance of CMOS-compatible MSCs, specifically for reduced graphene oxide as an electrode material. A 4 nm iron layer is deposited and annealed on the wafer substrate to increase the roughness of the surface. In comparison to standard nonroughened MSCs, the increase in surface roughness leads to a 78% increased electrode thickness, 21% improvement in mass retention, 57% improvement in the uniformity of the spin-coated electrodes, and a high yield of 87% working devices on a 2″ silicon substrate. Furthermore, these improvements directly translate to higher capacitive performance with enhanced rate capability, energy, and power density. This technique brings us one step closer to fully integrable CMOS-compatible MSCs in self-powered systems for on-chip wireless sensor electronics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...