Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev E ; 109(5-1): 054706, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38907476

RESUMO

Nematic tactoids are spindle-shaped droplets of a nematic phase nucleated in the co-existing isotropic phase. According to equilibrium theory, their internal structure and shape are controlled by a balance between the elastic deformation of the director field, induced by the preferred anchoring of that director field to the interface, and the interfacial free energy. Recent experiments on tactoids of chitin nanocrystals dispersed in water show that electrical fields can very strongly elongate tactoids, at least if the tactoids are sufficiently large in volume. However, this observation contradicts the predictions of equilibrium theory as well as findings from Monte Carlo simulations that do not show this kind of extreme elongation to take place at all. To explain this, we put forward a relaxational model based on the Oseen-Frank free energy of elastic deformation of a director field coupled to an anisotropic surface free energy. In our model, we use two reaction coordinates to describe the director field and the extent of elongation of the droplets and evaluate the evolution of both as a function of time following the switching on of an electric field. Depending on the relative magnitude of the fundamental relaxation rates associated with the two reaction coordinates, we find that the aspect ratio of the drops may develop a large and very long-lived overshoot before eventually relaxing to the much smaller equilibrium value. In that case, the response of the curvature of the director field lags behind, explaining the experimental observations. Our theory describes the experimental data reasonably well.

2.
J Chem Phys ; 160(8)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38407290

RESUMO

Using density functional theory, we study the preferential ordering of rod-like guest particles immersed in a smectic host fluid. Within a model of perfectly aligned rods and assuming that the guest particles do not perturb the smectic host fluid, simple excluded-volume arguments explain that guest particles that are comparable in length to the host particles order in phase with the smectic host density layering, whereas guest particles that are considerably shorter or longer order in antiphase. The corresponding free-energy minima are separated by energetic barriers on the order of the thermal energy kBT, suggesting that guest particles undergo hopping-type diffusion between adjacent smectic layers. Upon introducing a slight orientational mismatch between the guest particles and the perfectly aligned smectic host, an additional, smaller free-energy barrier emerges for a range of intermediate guest-to-host length ratios, which splits the free-energy minimum into two. Guest particles in this range occupy positions intermediate between in-phase ordering and in-antiphase ordering. Finally, we use Kramers' theory to identify slow, fast, and intermediate diffusive regimes for the guest particles as a function of their length. Our model is in qualitative agreement with experiment and simulation and provides an alternative, complementary explanation in terms of a free-energy landscape for the intermediate diffusive regime, which was previously hypothesized to result from temporary caging effects [M. Chiappini, E. Grelet, and M. Dijkstra, Phys. Rev. Lett. 124, 087801 (2020)]. We argue that our simple model of aligned rods captures the salient features of incommensurate-length guest particles in a smectic host if a slight orientational mismatch is introduced.

3.
J Chem Phys ; 160(8)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38415833

RESUMO

We theoretically investigate homogeneous crystal nucleation in a solution containing a solute and a volatile solvent. The solvent evaporates from the solution, thereby continuously increasing the concentration of the solute. We view it as an idealized model for the far-out-of-equilibrium conditions present during the liquid-state manufacturing of organic electronic devices. Our model is based on classical nucleation theory, taking the solvent to be a source of the transient conditions in which the solute drops out of the solution. Other than that, the solvent is not directly involved in the nucleation process itself. We approximately solve the kinetic master equations using a combination of Laplace transforms and singular perturbation theory, providing an analytical expression for the nucleation flux. Our results predict that (i) the nucleation flux lags slightly behind a commonly used quasi-steady-state approximation. This effect is governed by two counteracting effects originating from solvent evaporation: while a faster evaporation rate results in an increasingly larger influence of the lag time on the nucleation flux, this lag time itself is found to decrease with increasing evaporation rate. Moreover, we find that (ii) the nucleation flux and the quasi-steady-state nucleation flux are never identical, except trivially in the stationary limit, and (iii) the initial induction period of the nucleation flux, which we characterize as a generalized induction time, decreases weakly with the evaporation rate. This indicates that the relevant time scale for nucleation also decreases with an increasing evaporation rate. Our analytical theory compares favorably with results from a numerical evaluation of the governing kinetic equations.

4.
Nanoscale ; 15(45): 18337-18346, 2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-37921451

RESUMO

The presence of deposits of alpha-synuclein (αS) fibrils in the cells of the brain is a hallmark of several α-synucleinopathies, including Parkinson's disease. As most disease cases are not familial, it is likely that external factors play a role in the disease onset. One of the external factors that may influence the disease onset is viral infection. It has recently been shown in in vitro assays that in the presence of SARS-Cov-2 N-protein, αS fibril formation is faster and proceeds in an unusual two-step aggregation process. Here, we show that faster fibril formation is not due to the SARS-CoV-2 N-protein-catalysed formation of an aggregation-prone nucleus. Instead, aggregation starts with the formation of a population of mixed αS/N-protein fibrils with low affinity for αS. Mixed amyloid fibrils, composed of two different proteins, have not been observed before. After the depletion of N-protein, fibril formation comes to a halt, until a slow transformation into fibrils with characteristics of a pure αS fibril strain occurs. This transformation into a strain of αS fibrils subsequently results in a second phase of fibril growth until a new equilibrium is reached. We hypothesize that this fibril strain transformation may be of relevance in the cell-to-cell spread of the αS pathology and disease onset.


Assuntos
COVID-19 , Doença de Parkinson , Humanos , alfa-Sinucleína/metabolismo , SARS-CoV-2 , Doença de Parkinson/metabolismo , Encéfalo/metabolismo , Amiloide/metabolismo
5.
J Chem Phys ; 159(8)2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37610017

RESUMO

We extend a recently proposed kinetic theory of virus capsid assembly based on Model A kinetics and study the dynamics of the interconversion of virus capsids of different sizes triggered by a quench, that is, by sudden changes in the solution conditions. The work is inspired by in vitro experiments on functionalized coat proteins of the plant virus cowpea chlorotic mottle virus, which undergo a reversible transition between two different shell sizes (T = 1 and T = 3) upon changing the acidity and salinity of the solution. We find that the relaxation dynamics are governed by two time scales that, in almost all cases, can be identified as two distinct processes. Initially, the monomers and one of the two types of capsids respond to the quench. Subsequently, the monomer concentration remains essentially constant, and the conversion between the two capsid species completes. In the intermediate stages, a long-lived metastable steady state may present itself, where the thermodynamically less stable species predominate. We conclude that a Model A based relaxational model can reasonably describe the early and intermediate stages of the conversion experiments. However, it fails to provide a good representation of the time evolution of the state of assembly of the coat proteins in the very late stages of equilibration when one of the two species disappears from the solution. It appears that explicitly incorporating the nucleation barriers to assembly and disassembly is crucial for an accurate description of the experimental findings, at least under conditions where these barriers are sufficiently large.


Assuntos
Bromovirus , Capsídeo , Proteínas do Capsídeo , Cinética , Vírion
6.
Langmuir ; 39(17): 6142-6150, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37022793

RESUMO

Nucleation, growth, and transformation of chirality in nanomaterial systems is a growing research topic with broad interest in tunable and configurable chiroptical materials. Similar to other one-dimensional nanomaterials, cellulose nanocrystals (CNCs), which are nanorods of naturally abundant biopolymer cellulose, display chiral or cholesteric liquid crystal (LC) phases in the form of tactoids. However, the nucleation and growth of the cholesteric CNC tactoids to equilibrium chiral structures and their morphological transformations are yet to be critically assessed. We noticed that the onset of liquid crystal formation in CNC suspensions is characterized by the nucleation of a nematic tactoid that grows in volume and spontaneously transforms into a cholesteric tactoid. The cholesteric tactoids merge with the neighboring tactoids to form bulk cholesteric mesophases with various configurational palettes. We applied scaling laws from the energy functional theory and found suitable agreement with the morphological transformation of the tactoid droplets monitored for their fine structure and orientation by quantitative polarized light imaging.

7.
J Phys Chem B ; 127(10): 2160-2168, 2023 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-36881522

RESUMO

Recently, Maassen et al. measured an appreciable pH difference between the bulk solution and the solution in the lumen of virus-like particles, self-assembled in an aqueous buffer solution containing the coat proteins of a simple plant virus and polyanions (Maassen, S. J.; et al. Small 2018, 14, 1802081). They attribute this to the Donnan effect, caused by an imbalance between the number of negative charges on the encapsulated polyelectrolyte molecules and the number of positive charges on the RNA binding domains of the coat proteins that make up the virus shell or capsid. By applying Poisson-Boltzmann theory, we confirm this conclusion and show that simple Donnan theory is accurate even for the smallest of viruses and virus-like particles. This, in part, is due to the additional screening caused by the presence of a large number of immobile charges in the cavity of the shell. The presence of a net charge on the outer surface of the capsid we find in practice to not have a large effect on the pH shift. Hence, Donnan theory can indeed be applied to connect the local pH and the amount of encapsulated material. The large shifts up to a full pH unit that we predict must have consequences for applications of virus capsids as nanocontainers in bionanotechnology and artificial cell organelles.


Assuntos
Vírus , Eletricidade Estática , Vírus/química , Proteínas do Capsídeo/química , Capsídeo/metabolismo , Vírion/metabolismo
8.
Phys Rev E ; 106(4-1): 044609, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36397475

RESUMO

We model the behavior of a single colloid embedded in a cross-linked polymer gel, immersed in a viscous background fluid. External fields actuate the particle into a periodic motion, which deforms the embedding matrix and creates a local microcavity, containing the particle and any free volume created by its motion. This cavity exists only as long as the particle is actuated and, when present, reduces the local density of the material, leading to swelling. We show that the model exhibits rich resonance features, but is overall characterized by clear scaling laws at low and high driving frequencies, and a pronounced resonance at intermediate frequencies. Our model predictions suggest that both the magnitude and position of the resonance can be varied by varying the material's elastic modulus or cross-linking density, whereas the local viscosity primarily has a dampening effect. Our work implies appreciable free-volume generation is possible by dispersing a collection of colloids in the medium, even at the level of a simple superposition approximation.

9.
J Am Chem Soc ; 144(28): 12608-12612, 2022 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-35792573

RESUMO

Cowpea chlorotic mottle virus (CCMV) is a widely used model for virus replication studies. A major challenge lies in distinguishing between the roles of the interaction between coat proteins and that between the coat proteins and the viral RNA in assembly and disassembly processes. Here, we report on the spontaneous and reversible size conversion of the empty capsids of a CCMV capsid protein functionalized with a hydrophobic elastin-like polypeptide which occurs following a pH jump. We monitor the concentrations of T = 3 and T = 1 capsids as a function of time and show that the time evolution of the conversion from one T number to another is not symmetric: The conversion from T = 1 to T = 3 is a factor of 10 slower than that of T = 3 to T = 1. We explain our experimental findings using a simple model based on classical nucleation theory applied to virus capsids, in which we account for the change in the free protein concentration, as the different types of shells assemble and disassemble by shedding or absorbing single protein subunits. As far as we are aware, this is the first study confirming that both the assembly and disassembly of viruslike shells can be explained through classical nucleation theory, reproducing quantitatively results from time-resolved experiments.


Assuntos
Bromovirus , Capsídeo , Bromovirus/química , Capsídeo/química , Proteínas do Capsídeo/química , RNA Viral/análise , Vírion , Montagem de Vírus
10.
Biophys J ; 121(13): 2583-2599, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35642255

RESUMO

Inspired by recent experiments on the spontaneous assembly of virus-like particles from a solution containing a synthetic coat protein and double-stranded DNA, we put forward a kinetic model that has as main ingredients a stochastic nucleation and a deterministic growth process. The efficiency and rate of DNA packaging strongly increase after tiling the DNA with CRISPR-Cas proteins at predesignated locations, mimicking assembly signals in viruses. Our model shows that treating these proteins as nucleation-inducing diffusion barriers is sufficient to explain the experimentally observed increase in encapsulation efficiency, but only if the nucleation rate is sufficiently high. We find an optimum in the encapsulation kinetics for conditions where the number of packaging signal mimics is equal to the number of nucleation events that can occur during the time required to fully encapsulate the DNA template, presuming that the nucleation events can only take place adjacent to a packaging signal. Our theory is in satisfactory agreement with the available experimental data.


Assuntos
Empacotamento do DNA , Montagem de Vírus , DNA , Cinética , Proteínas/genética , Montagem de Vírus/genética
11.
Soft Matter ; 18(21): 4167-4177, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35593227

RESUMO

We combine a heuristic theory of geometric percolation and the Smoluchowski theory of colloid dynamics to predict the impact of shear flow on the percolation threshold of hard spherical colloidal particles, and verify our findings by means of molecular dynamics simulations. It appears that the impact of shear flow is subtle and highly non-trivial, even in the absence of hydrodynamic interactions between the particles. The presence of shear flow can both increase and decrease the percolation threshold, depending on the criterion used for determining whether or not two particles are connected and on the Péclet number. Our approach opens up a route to quantitatively predict the percolation threshold in nanocomposite materials that, as a rule, are produced under non-equilibrium conditions, making comparison with equilibrium percolation theory tenuous. Our theory can be adapted straightforwardly for application in other types of flow field, and particles of different shape or interacting via other than hard-core potentials.

12.
Soft Matter ; 18(18): 3594-3604, 2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35481873

RESUMO

Recently, three distinct, well-separated transient regimes were discovered in the dynamics of the volume expansion of shape-shifting liquid crystal network films in response to the switching on of an alternating electric field [Van der Kooij et al., Nat. Commun., 2019, 10, 1]. Employing a spatially resolved, time-dependent Landau theory that couples local volume generation to the degree of orientational order of mesogens that are part of a viscoelastic network, we are able to offer a physical explanation for the existence of three time scales. We find that the initial response is dominated by overcoming the impact of thermal noise, after which the top of the film expands, followed by a permeation of this response into the bulk region. An important signature of our predictions is a significant dependence of the three time scales on the film thickness, where we observe a clear thin-film-to-bulk transition. The point of transition coincides with the emergence of spatial inhomogeneities in the bulk of the film in the form of domains separated by regions of suppressed expansion. This ultimately gives rise to variations in the steady-state overall expansion of the film and may lead to uncontrolled patterning. According to our model, domain formation can be suppressed by (1) decreasing the thickness of the as-prepared film, (2) increasing the linear dimensions of the mesogens, or (3) their degree of orientational order when cross-linked into the network. Our findings provide a handle to achieve finer control over the actuation of smart liquid crystal network coatings.

13.
J Chem Phys ; 156(10): 104501, 2022 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-35291783

RESUMO

We study by means of Monte Carlo simulations the internal structure of nematic droplets or tactoids formed by hard, rod-like particles in a gas of spherical ghost particles that act as depletion agents for the rods. We find that the shape and internal structure of tactoids are strongly affected by the size of the droplets. The monotonically increasing degree of nematic order with increasing particle density that characterizes the bulk nematic phase is locally violated and more so the smaller the tactoid. We also investigate the impact of an external quadrupolar alignment field on tactoids and find that this tends to make the director field more uniform, but not to very significantly increase the tactoid's aspect ratio. This agrees with recent theoretical predictions yet is at variance with experimental observations and dynamical simulations. We explain this discrepancy in terms of competing relaxation times.

14.
Phys Rev E ; 104(5-1): 054701, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34942727

RESUMO

Liquid crystal networks exploit the coupling between the responsivity of liquid crystalline mesogens, e.g., to electric fields, and the (visco)elastic properties of a polymer network. Because of this, these materials have been put forward for a wide array of applications, including responsive surfaces such as artificial skins and membranes. For such applications, the desired functional response must generally be realized under strict geometrical constraints, such as provided by supported thin films. To model such settings, we present a dynamical, spatially heterogeneous Landau-type theory for electrically actuated liquid crystal network films. We find that the response of the liquid crystal network permeates the film from top to bottom, and illustrate how this affects the timescale associated with macroscopic deformation. Finally, by linking our model parameters to experimental quantities, we suggest that the permeation rate can be controlled by varying the aspect ratio of the mesogens and their degree of orientational order when crosslinked into the polymer network, for which we predict a single optimum. Our results contribute specifically to the rational design of future applications involving transport or on-demand release of molecular cargo in liquid crystal network films.

15.
Phys Rev E ; 104(5-1): 054605, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34942762

RESUMO

We apply connectedness percolation theory to fractal liquids of hard particles, and make use of a Percus-Yevick liquid state theory combined with a geometric connectivity criterion. We find that in fractal dimensions the percolation threshold interpolates continuously between integer-dimensional values, and that it decreases monotonically with increasing (fractal) dimension. The influence of hard-core interactions is significant only for dimensions below three. Finally, our theory incorrectly suggests that a percolation threshold is absent below about two dimensions, which we attribute to the breakdown of the connectedness Percus-Yevick closure.

16.
Soft Matter ; 17(46): 10458-10468, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34766962

RESUMO

We present a theoretical study on continuum percolation of rod-like colloidal particles in the presence of axial and planar quadrupole fields. Our work is based on a self-consistent numerical treatment of the connectedness Ornstein-Zernike equation, in conjunction with the Onsager equation that describes the orientational distribution function of particles interacting via a hard-core repulsive potential. Our results show that axial and planar quadrupole fields both in principle increase the percolation threshold. By how much depends on a combination of the field strength, the concentration, the aspect ratio of the particles, and percolation criterion. We find that the percolated state can form and break down multiple times with increasing concentration, i.e., it exhibits re-entrance behaviour. Finally, we show that planar fields may induce a high degree of triaxiality in the shape of particle clusters that in actual materials may give rise to highly anisotropic conductivity properties.

17.
Phys Rev E ; 103(6-1): 062703, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34271629

RESUMO

Tactoids are spindle-shaped droplets of a uniaxial nematic phase suspended in the coexisting isotropic phase. They are found in dispersions of a wide variety of elongated colloidal particles, including actin, fd virus, carbon nanotubes, vanadium peroxide, and chitin nanocrystals. Recent experiments on tactoids of chitin nanocrystals in water show that electric fields can very strongly elongate tactoids even though the dielectric properties of the coexisting isotropic and nematic phases differ only subtly. We develop a model for partially bipolar tactoids, where the degree of bipolarness of the director field is free to adjust to optimize the sum of the elastic, surface, and Coulomb energies of the system. By means of a combination of a scaling analysis and a numerical study, we investigate the elongation and director field's behavior of the tactoids as a function of their size, the strength of the electric field, the surface tension, anchoring strength, the elastic constants, and the electric susceptibility anisotropy. We find that tactoids cannot elongate significantly due to an external electric field, unless the director field is bipolar or quasibipolar and somehow frozen in the field-free configuration. Presuming that this is the case, we find reasonable agreement with experimental data.

18.
Phys Rev E ; 103(4-1): 042801, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34005894

RESUMO

Using lattice Boltzmann simulations we investigate the impact of the amplitude of concentration fluctuations in binary fluid mixtures prior to demixing when in contact with a surface that is preferentially wet by one of the components. We find a bicontinuous structure near the surface for an initial, prequench state of the mixture close to the critical point where the amplitude of concentration fluctuations is large. In contrast, if the initial state of the mixture is not near the critical point and concentration fluctuations are relatively weak, then the morphology is not bicontinuous but remains layered until the very late stages of coarsening. In both cases, it is the morphology of a depletion layer rich in the nonpreferred component that dictates the growth exponent of the thickness of the fluid layer that is in direct contact with the substrate. In the early stages of demixing, we find a growth exponent consistent with a value of 1/4 for a prequench state away from the critical point, which is different from the usual diffusive scaling exponent of 1/3 that we recover for a prequench state close to the critical point. We attribute this to the structure of a depletion layer that is penetrated by tubes of the preferred fluid, connecting the wetting layer to the bulk fluid even in the early stages if the initial state is characterized by concentration fluctuations that are large in amplitude. Furthermore, we find that in the late stages of demixing the flow through these tubes results in significant in-plane concentration variations near the substrate, leading to dropletlike structures with a concentration lower than the average concentration in the wetting layer. This causes a deceleration in the growth of the wetting layer in the very late stages of the demixing. Irrespective of the prequench state of the mixture, the late stages of the demixing process produce the same growth law for the layer thickness, with a scaling exponent of unity usually associated with the impact of hydrodynamic flow fields.

19.
Phys Rev E ; 103(4-1): 042115, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34005937

RESUMO

We introduce a method to estimate continuum percolation thresholds and illustrate its usefulness by investigating geometric percolation of noninteracting line segments and disks in two spatial dimensions. These examples serve as models for electrical percolation of elongated and flat nanofillers in thin film composites. While the standard contact volume argument and extensions thereof in connectedness percolation theory yield accurate predictions for slender nanofillers in three dimensions, they fail to do so in two dimensions, making our test a stringent one. In fact, neither a systematic order-by-order correction to the standard argument nor invoking the connectedness version of the Percus-Yevick approximation yield significant improvements for either type of particle. Making use of simple geometric considerations, our new method predicts a percolation threshold of ρ_{c}l^{2}≈5.83 for segments of length l, which is close to the ρ_{c}l^{2}≈5.64 found in Monte Carlo simulations. For disks of area a we find ρ_{c}a≈1.00, close to the Monte Carlo result of ρ_{c}a≈1.13. We discuss the shortcomings of the conventional approaches and explain how usage of the nearest-neighbor distribution in our method bypasses those complications.

20.
Soft Matter ; 17(20): 5122-5130, 2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-33735362

RESUMO

Carbon nanotubes (CNTs) are stiff, all-carbon macromolecules with diameters as small as one nanometer and few microns long. Solutions of CNTs in chlorosulfonic acid (CSA) follow the phase behavior of rigid rod polymers interacting via a repulsive potential and display a liquid crystalline phase at sufficiently high concentration. Here, we show that small-angle X-ray scattering and polarized light microscopy data can be combined to characterize quantitatively the morphology of liquid crystalline phases formed in CNT solutions at concentrations from 3 to 6.5% by volume. We find that upon increasing their concentration, CNTs self-assemble into a liquid crystalline phase with a pleated texture and with a large inter-particle spacing that could be indicative of a transition to higher-order liquid crystalline phases. We explain how thermal undulations of CNTs can enhance their electrostatic repulsion and increase their effective diameter by an order of magnitude. By calculating the critical concentration, where the mean amplitude of undulation of an unconstrained rod becomes comparable to the rod spacing, we find that thermal undulations start to affect steric forces at concentrations as low as the isotropic cloud point in CNT solutions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...