Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 35(49): e2304728, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37586746

RESUMO

Highly efficient organic light-emitting diodes (OLEDs) based on thermally activated delayed fluorescence (TADF) emitters are realized in recent years, but the device lifetime needs further improvement for practical display or lighting applications. In this work, a device design principle is presented by tuning the optical cavity of single-layer undoped devices, to realize efficient and long-lived TADF OLEDs. Extending the cavity length to the second-order interference maximum by increasing the emissive layer thickness broadens the recombination zone, while the optical outcoupling efficiency remains close to that of the thinner first-order devices. Such a device design leads to efficient and stable single-layer undoped OLEDs with a maximum external quantum efficiency of 16%, an LT90 of 452 h, and an LT50 of 3693 h at an initial luminance of 1000 cd m-2 , which is doubled compared to the first-order counterparts. It is further demonstrated that the widely-used empirical relation between OLED lifetime and light intensity originates from triplet-polaron annihilation, resulting in an extrapolated LT50 at 100 cd m-2 of close to 90 000 h, approaching the demands for practical backlight applications.

2.
Sci Rep ; 13(1): 4717, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36949087

RESUMO

Bimolecular charge recombination is one of the most important loss processes in organic solar cells. However, the bimolecular recombination rate in solar cells based on novel non-fullerene acceptors is mostly unclear. Moreover, the origin of the reduced-Langevin recombination rate in bulk heterojunction solar cells in general is still poorly understood. Here, we investigate the bimolecular recombination rate and charge transport in a series of high-performance organic solar cells based on non-fullerene acceptors. From steady-state dark injection measurements and drift-diffusion simulations of the current-voltage characteristics under illumination, Langevin reduction factors of up to over two orders of magnitude are observed. The reduced recombination is essential for the high fill factors of these solar cells. The Langevin reduction factors are observed to correlate with the quadrupole moment of the acceptors, which is responsible for band bending at the donor-acceptor interface, forming a barrier for charge recombination. Overall these results therefore show that suppressed bimolecular recombination is essential for the performance of organic solar cells and provide design rules for novel materials.

3.
Adv Sci (Weinh) ; 9(19): e2200056, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35253396

RESUMO

Excellent performance has been reported for organic light-emitting diodes (OLEDs) based on small molecule emitters that exhibit thermally activated delayed fluorescence. However, the necessary vacuum processing makes the fabrication of large-area devices based on these emitters cumbersome and expensive. Here, the authors present high performance OLEDs, based on novel, TADF polymers that can be readily processed from a solution. These polymers are based on the acridine-benzophenone donor-acceptor motif as main-chain TADF chromophores, linked by various conjugated and non-conjugated spacer moieties. The authors' extensive spectroscopic and electronic analysis shows that in particular in case of alkyl spacers, the properties and performance of the monomeric TADF chromophores are virtually left unaffected by the polymerization. They present efficient solution-processed OLEDs based on these TADF polymers, diluted in oligostyrene as a host. The devices based on the alkyl spacer-based TADF polymers exhibit external quantum efficiencies (EQEs) ≈12%, without any outcoupling-enhancing measures. What's more, the EQE of these devices does not drop substantially upon diluting the polymer down to only ten weight percent of active material. In contrast, the EQE of devices based on the monomeric chromophore show significant losses upon dilution due to loss of charge percolation.

4.
Adv Mater ; 34(13): e2108887, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34786784

RESUMO

The various contributions to the external quantum efficiency (EQE) of polymer light-emitting diodes (PLEDs) are discussed. The EQE of an organic light-emitting diode is governed by a number of parameters, such as the electrical efficiency, the photoluminescence quantum yield (PLQY), the optical outcoupling efficiency and the spin statistics for singlet exciton generation. In the last decade, the electrical efficiency has been determined from a numerical PLED device model. More recently, an optical model to simulate the fraction of photons outcoupled to air for PLEDs with a broad recombination zone has been developed. Together with the directly measured PLQY, the EQE of a PLED can then be estimated. However, it has been observed that the measured EQEs of fluorescent PLEDs, including the model system super-yellow poly(p-phenylene vinylene) (SY-PPV) often exceed the expected values. To solve this discrepancy, it is demonstrate that the electrical PLED model has to be expanded by the inclusion of triplet-triplet annihilation (TTA), which is shown to be responsible for a substantial EQE enhancement. Experimentally, it is obtained that TTA contributes to a singlet-exciton generation efficiency of ≈40% in SY-PPV PLEDs, giving rise to an EQE of ≈4% instead of the expected value of 2.5%.

5.
Artigo em Inglês | MEDLINE | ID: mdl-34132516

RESUMO

Molecular doping makes possible tunable electronic properties of organic semiconductors, yet a lack of control of the doping process narrows its scope for advancing organic electronics. Here, we demonstrate that the molecular doping process can be improved by introducing a neutral radical molecule, namely nitroxyl radical (2,2,6,6-teramethylpiperidin-i-yl) oxyl (TEMPO). Fullerene derivatives are used as the host and 1,3-dimethyl-2-phenyl-2,3-dihydro-1H-benzo[d]imidazoles (DMBI-H) as the n-type dopant. TEMPO can abstract a hydrogen atom from DMBI-H and transform the latter into a much stronger reducing agent DMBI•, which efficiently dopes the fullerene derivative to yield an electrical conductivity of 4.4 S cm-1. However, without TEMPO, the fullerene derivative is only weakly doped likely by a hydride transfer following by an inefficient electron transfer. This work unambiguously identifies the doping pathway in fullerene derivative/DMBI-H systems in the presence of TEMPO as the transfer of a hydrogen atom accompanied by electron transfer. In the absence of TEMPO, the doping process inevitably leads to the formation of less symmetrical hydrogenated fullerene derivative anions or radicals, which adversely affect the molecular packing. By adding TEMPO we can exclude the formation of such species and, thus, improve charge transport. In addition, a lower temperature is sufficient to meet an efficient doping process in the presence of TEMPO. Thereby, we provide an extra control of the doping process, enabling enhanced thermoelectric performance at a low processing temperature.

6.
Nat Commun ; 11(1): 5694, 2020 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-33173050

RESUMO

The 'phonon-glass electron-crystal' concept has triggered most of the progress that has been achieved in inorganic thermoelectrics in the past two decades. Organic thermoelectric materials, unlike their inorganic counterparts, exhibit molecular diversity, flexible mechanical properties and easy fabrication, and are mostly 'phonon glasses'. However, the thermoelectric performances of these organic materials are largely limited by low molecular order and they are therefore far from being 'electron crystals'. Here, we report a molecularly n-doped fullerene derivative with meticulous design of the side chain that approaches an organic 'PGEC' thermoelectric material. This thermoelectric material exhibits an excellent electrical conductivity of >10 S cm-1 and an ultralow thermal conductivity of <0.1 Wm-1K-1, leading to the best figure of merit ZT = 0.34 (at 120 °C) among all reported single-host n-type organic thermoelectric materials. The key factor to achieving the record performance is to use 'arm-shaped' double-triethylene-glycol-type side chains, which not only offer excellent doping efficiency (~60%) but also induce a disorder-to-order transition upon thermal annealing. This study illustrates the vast potential of organic semiconductors as thermoelectric materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...