Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IEEE Trans Neural Netw Learn Syst ; 34(7): 3345-3356, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35511836

RESUMO

Numerical models based on physics represent the state of the art in Earth system modeling and comprise our best tools for generating insights and predictions. Despite rapid growth in computational power, the perceived need for higher model resolutions overwhelms the latest generation computers, reducing the ability of modelers to generate simulations for understanding parameter sensitivities and characterizing variability and uncertainty. Thus, surrogate models are often developed to capture the essential attributes of the full-blown numerical models. Recent successes of machine learning methods, especially deep learning (DL), across many disciplines offer the possibility that complex nonlinear connectionist representations may be able to capture the underlying complex structures and nonlinear processes in Earth systems. A difficult test for DL-based emulation, which refers to function approximation of numerical models, is to understand whether they can be comparable to traditional forms of surrogate models in terms of computational efficiency while simultaneously reproducing model results in a credible manner. A DL emulation that passes this test may be expected to perform even better than simple models with respect to capturing complex processes and spatiotemporal dependencies. Here, we examine, with a case study in satellite-based remote sensing, the hypothesis that DL approaches can credibly represent the simulations from a surrogate model with comparable computational efficiency. Our results are encouraging in that the DL emulation reproduces the results with acceptable accuracy and often even faster performance. We discuss the broader implications of our results in light of the pace of improvements in high-performance implementations of DL and the growing desire for higher resolution simulations in the Earth sciences.


Assuntos
Cocaína , Aprendizado Profundo , Tecnologia de Sensoriamento Remoto , Redes Neurais de Computação , Aprendizado de Máquina
2.
IEEE Trans Neural Netw Learn Syst ; 34(7): 3245-3254, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34375289

RESUMO

Applications of satellite data in areas such as weather tracking and modeling, ecosystem monitoring, wildfire detection, and land-cover change are heavily dependent on the tradeoffs to spatial, spectral, and temporal resolutions of observations. In weather tracking, high-frequency temporal observations are critical and used to improve forecasts, study severe events, and extract atmospheric motion, among others. However, while the current generation of geostationary (GEO) satellites has hemispheric coverage at 10-15-min intervals, higher temporal frequency observations are ideal for studying mesoscale severe weather events. In this work, we present a novel application of deep learning-based optical flow to temporal upsampling of GEO satellite imagery. We apply this technique to 16 bands of the GOES-R/Advanced Baseline Imager mesoscale dataset to temporally enhance full-disk hemispheric snapshots of different spatial resolutions from 10 to 1 min. Experiments show the effectiveness of task-specific optical flow and multiscale blocks for interpolating high-frequency severe weather events relative to bilinear and global optical flow baselines. Finally, we demonstrate strong performance in capturing variability during convective precipitation events.


Assuntos
Fluxo Óptico , Imagens de Satélites , Ecossistema , Redes Neurais de Computação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...