Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cell Biol ; 21(19): 6484-94, 2001 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-11533237

RESUMO

The E2F transcription factor controls the cell cycle-dependent expression of many S-phase-specific genes. Transcriptional repression of these genes in G(0) and at the beginning of G(1) by the retinoblasma protein Rb is crucial for the proper control of cell proliferation. Rb has been proposed to function, at least in part, through the recruitment of histone deacetylases. However, recent results indicate that other chromatin-modifying enzymes are likely to be involved. Here, we show that Rb also interacts with a histone methyltransferase, which specifically methylates K9 of histone H3. The results of coimmunoprecipitation experiments of endogenous or transfected proteins indicate that this histone methyltransferase is the recently described heterochromatin-associated protein Suv39H1. Interestingly, phosphorylation of Rb in vitro as well as in vivo abolished the Rb-Suv39H1 interaction. We also found that Suv39H1 and Rb cooperate to repress E2F activity and that Suv39H1 could be recruited to E2F1 through its interaction with Rb. Taken together, these data indicate that Suv39H1 is involved in transcriptional repression by Rb and suggest an unexpected link between E2F regulation and heterochromatin.


Assuntos
Proteínas de Ciclo Celular , Proteínas de Ligação a DNA , Histona-Lisina N-Metiltransferase , Metiltransferases/metabolismo , Proteínas Repressoras/metabolismo , Proteína do Retinoblastoma/metabolismo , Proteína do Retinoblastoma/fisiologia , Divisão Celular , Linhagem Celular , Fatores de Transcrição E2F , Fator de Transcrição E2F1 , Células HeLa , Heterocromatina/metabolismo , Histona Metiltransferases , Humanos , Células Jurkat , Metiltransferases/fisiologia , Modelos Genéticos , Fosforilação , Regiões Promotoras Genéticas , Proteínas Metiltransferases , Estrutura Terciária de Proteína , Proteínas Repressoras/fisiologia , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/química , Transcrição Gênica
2.
EMBO Rep ; 2(1): 21-6, 2001 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-11252719

RESUMO

CBP (CREB-binding protein) is involved in transcriptional activation by a great variety of sequence-specific transcription factors. CBP has been shown to activate transcription through its histone acetyl transferase activity. Acetylation is a common post-translational modification of nucleosomal histone N-terminal tails, which generally correlates with transcriptional activation. Histone N-terminal tails are also modified by methylation but its functional consequences are largely unknown. Here we found that immunoprecipitation of CBP, or of the highly related p300, led to the co-immunoprecipitation of a robust histone methyl transferase (HMT) activity, indicating that CBP physically interacts with an HMT in living cells. The CBP-associated HMT is specific for lysines 4 and 9 of histone H3, which are known to be methylated in living cells. These results suggest that histone methylation could be involved in transcriptional activation. Furthermore, they raise the question of the link between histone methylation and acetylation.


Assuntos
Histona-Lisina N-Metiltransferase , Metiltransferases/química , Proteínas Nucleares/química , Ligação Proteica , Proteínas de Saccharomyces cerevisiae , Transativadores/química , Acetilação , Acetiltransferases/química , Acetiltransferases/metabolismo , Aminoácidos/química , Proteína de Ligação a CREB , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/enzimologia , Núcleo Celular/metabolismo , Células HeLa , Histona Acetiltransferases , Histona Metiltransferases , Histonas/química , Histonas/metabolismo , Humanos , Lisina/química , Metilação , Metiltransferases/metabolismo , Proteínas Nucleares/metabolismo , Nucleossomos/metabolismo , Testes de Precipitina , Proteínas Metiltransferases , Transativadores/metabolismo , Fatores de Transcrição , Ativação Transcricional , Fatores de Transcrição de p300-CBP
3.
EMBO J ; 20(1-2): 137-45, 2001 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-11226164

RESUMO

During development, extracellular signals often act at multiple thresholds to specify distinct transcriptional and cellular responses. For example, in the embryonic midgut of Drosophila, low Wingless levels stimulate the transcription of homeotic genes whereas high Wingless levels repress these genes. Wingless- mediated transcriptional activation is conferred by Drosophila: T-cell factor (dTCF) and its co-activator Armadillo, but the nuclear factors mediating transcriptional repression are unknown. Here we show that teashirt is required for Wingless-mediated repression of Ultrabithorax: in the midgut. Teashirt is also a repressor of the homeotic gene labial in this tissue. Furthermore, the target sequence for Tsh within the Ultrabithorax: midgut enhancer coincides with the response sequence for Wingless-mediated repression. Finally, we demonstrate that the zinc finger protein Teashirt behaves as a transcriptional repressor in transfected mammalian cells. It thus appears that the response to high Wingless levels in the Drosophila: midgut is indirect and based on transcriptional activation of the Teashirt repressor.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster/embriologia , Drosophila melanogaster/genética , Regulação da Expressão Gênica no Desenvolvimento , Genes Homeobox , Proteínas de Homeodomínio/genética , Proteínas de Insetos/genética , Proteínas Proto-Oncogênicas/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica , Animais , Linhagem Celular , Embrião não Mamífero/fisiologia , Proteínas de Homeodomínio/metabolismo , Proteínas de Insetos/metabolismo , Luciferases/genética , Fenótipo , Proteínas Proto-Oncogênicas/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Repressoras/metabolismo , Fatores de Transcrição/genética , Transfecção , Proteína Wnt1 , Dedos de Zinco
4.
EMBO J ; 18(15): 4280-91, 1999 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-10428966

RESUMO

The transcription factor E2F-1 plays a key role in regulating cell cycle progression. Accordingly, E2F-1 activity is itself tightly controlled by a series of transcriptional and post-transcriptional events. Here we show that the E2F-1 activation domain interacts with a kinase activity which phosphorylates two sites, Ser403 and Thr433, within the activation domain. We demonstrate that TFIIH is responsible for the E2F-1 phosphorylation observed in cell extracts and that endogenous E2F-1 interacts in vivo with p62, a component of TFIIH, during S phase. When the two phosphorylation sites in E2F-1 are mutated to alanine, the stability of the E2F-1 activation domain is greatly increased. These results suggest that TFIIH-mediated phosphorylation of E2F-1 plays a role in triggering E2F-1 degradation during S phase.


Assuntos
Proteínas de Transporte , Proteínas de Ciclo Celular , Proteínas de Ligação a DNA , Proteínas de Drosophila , Fase S , Transativadores , Fatores de Transcrição TFII , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Linhagem Celular , Fatores de Transcrição E2F , Fator de Transcrição E2F1 , Células HeLa , Humanos , Hidrólise , Dados de Sequência Molecular , Fosforilação , Ligação Proteica , Proteínas Quinases/metabolismo , Proteína 1 de Ligação ao Retinoblastoma , Homologia de Sequência de Aminoácidos , Serina/metabolismo , Treonina/metabolismo , Fator de Transcrição DP1 , Fator de Transcrição TFIIH , Fatores de Transcrição/química , Transcrição Gênica
5.
Oncogene ; 14(22): 2721-8, 1997 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-9178770

RESUMO

A yeast two-hybrid screen has identified HBP1 as a transcription factor capable of interacting with the pocket protein family. We show that HBP1 can interact with one of these, RB, both in vitro and in mammalian cells. Two distinct RB binding sites are present within HBP1--a high affinity binding site, mediated by an LXCXE motif and a separate low affinity binding site present within an activation domain. GAL4-fusion experiments indicate that HBP1 contains a masked activation domain. Deletion of two independent N- and C-terminal inhibitor domains unmasks an activation domain which is 100-fold more active than the full length protein. The released activation capacity is repressed by RB, p130 and p107. In addition, E1A can repress the activity of HBP1 via conserved region 1 sequences in a manner independent of the CBP co-activator. We show by stable expression in NIH3T3 cells that HBP1 has the capacity to induce morphological transformation of cells in culture.


Assuntos
Proteínas E1A de Adenovirus/metabolismo , Proteínas de Grupo de Alta Mobilidade/metabolismo , Fosfoproteínas/metabolismo , Proteínas , Proteínas Repressoras/metabolismo , Células 3T3 , Animais , Humanos , Camundongos , Ligação Proteica , Proteína p130 Retinoblastoma-Like , Células Tumorais Cultivadas
6.
Mol Cell Biol ; 16(5): 1881-8, 1996 May.
Artigo em Inglês | MEDLINE | ID: mdl-8628254

RESUMO

Among the Jun family of transcription factors, only c-Jun displays full transforming potential in cooperation with activated c-Ha-Ras in primary rat embryo fibroblasts. c-Jun in combination with Ras can both induce foci of transformed cells from rat embryo fibroblast monolayers and promote the establishment of these foci as tumoral cell lines. JunB can also cooperate with Ras to induce foci but is unable to promote immortalization. We report here that JunD, in cooperation with Ras, induces foci with an efficiency similar to that of JunB. Artificial Jun/eb1 derivatives from each of the three Jun proteins were also analyzed. These constructs carry a heterologous homodimerization domain from the viral EB1 transcription factor and are thought to form only homodimers in the cell. We show here that these Jun/eb1 chimeras are potent transactivators of AP1 sites and that they can cooperate with c-Ha-Ras to induce foci. However, among all the Ras-Jun and Ras-Jun/eb1 combinations tested, only foci from Ras-c-Jun can be efficiently expanded and maintained as long-term growing cultures. Therefore, we suggest that a heterodimer containing c-Jun might be required for in vitro establishment of these primary mammalian cells.


Assuntos
Transformação Celular Neoplásica , Genes jun , Genes myc , Proteínas Proto-Oncogênicas c-jun/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Animais , Western Blotting , Linhagem Celular Transformada , Células Cultivadas , Embrião de Mamíferos , Fibroblastos , Cinética , Luciferases/biossíntese , Proteínas Proto-Oncogênicas c-jun/biossíntese , Proteínas Proto-Oncogênicas p21(ras)/biossíntese , Ratos , Ratos Wistar , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/metabolismo , Fatores de Transcrição/metabolismo , Ativação Transcricional , Transfecção
7.
Oncogene ; 11(9): 1699-709, 1995 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-7478597

RESUMO

To study the contribution of v-Jun homodimers to oncogenesis, we constructed artificial v-Jun derivatives in which the natural dimerization domain of v-Jun was replaced by an heterologous homodimerization domain from either the viral EB1 or the yeast GCN4 transcription factor. The resulting v-Jun chimeric proteins, called v-Juneb1 and v-Jungcn4, which can no longer dimerize with Jun or Fos, should only form homodimers in the cell. Helper-independent retroviruses expressing v-Jun, v-Juneb1 and v-Jungcn4 were generated. All three viruses transformed primary cultures of chick embryo cells with the same high efficiency and promoted local tumor growth after subcutaneous injection of infected cells in young animals. In contrast, after intravenous injection of viral suspensions into chick embryos, only the chimeric proteins produced internal tumors that were lethal. These tumors were leiomyosarcomas located within the liver and along the digestive tract. Thus, in vivo, v-Juneb1 and v-Jungcn4 are more potent oncoproteins than v-Jun. These data demonstrate that when forced to accumulate, v-Jun homodimers can induce tumors efficiently. They also show that the oncogenic potential of v-Jun can be regulated through the properties of its dimerization domain.


Assuntos
Transformação Celular Neoplásica , Proteínas de Ligação a DNA , Genes jun , Proteína Oncogênica p65(gag-jun)/fisiologia , Proteínas de Saccharomyces cerevisiae , Animais , Sequência de Bases , Células Cultivadas , Embrião de Galinha , Galinhas , Cloranfenicol O-Acetiltransferase/biossíntese , Primers do DNA , Proteínas Fúngicas/biossíntese , Expressão Gênica , Vetores Genéticos , Moela das Aves/patologia , Imuno-Histoquímica , Substâncias Macromoleculares , Microscopia Eletrônica , Dados de Sequência Molecular , Proteína Oncogênica p65(gag-jun)/biossíntese , Proteína Oncogênica p65(gag-jun)/química , Reação em Cadeia da Polimerase , Regiões Promotoras Genéticas , Biossíntese de Proteínas , Proteínas Quinases/biossíntese , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Retroviridae , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Neoplasias Gástricas/ultraestrutura , Ativação Transcricional , Proteínas Virais/biossíntese
8.
Oncogene ; 10(3): 495-507, 1995 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-7845674

RESUMO

The closely-related proteins c-Jun, JunB and JunD form a family of transcription factors which require dimerization for DNA-binding and transcriptional activity. Dimerization is mediated by a conserved amphipathic alpha-helix located adjacent to a highly charged DNA-binding domain. The Jun proteins can form both homo- and heterodimers within the Jun family and can also cross-dimerize with the Fos proteins. When expressed at high levels in primary chicken cells, each mouse Jun displays distinct transforming capacities: c-Jun transforms efficiently, JunB transforms poorly, and JunD does not transform at all. The composition of the transforming dimers, however, is unknown. To study the activity of Jun-Jun homodimers we constructed artificial derivatives, denoted Juneb1, in which the naturally occurring dimerization domain has been replaced by an heterologous homodimerization domain from the Epstein-Barr virus transcription factor EB1. These derivatives were introduced into chicken cells and assayed for their ability to affect growth. Unexpectedly, all three Juneb1 proteins conferred a transformed phenotype to primary cultures, promoting sustained growth in low-serum medium and colony formation from single cells in agar. These data demonstrate that when forced to accumulate as homodimers, both JunB and JunD can transform cells. They also suggest that the poor transforming activity of JunB and the absence of transforming activity of JunD may be due to their inability to accumulate to high levels as homodimers.


Assuntos
Transformação Celular Neoplásica , Proteínas Proto-Oncogênicas c-jun/química , Proteínas Proto-Oncogênicas c-jun/fisiologia , Sequência de Aminoácidos , Animais , Biopolímeros/fisiologia , Divisão Celular , Células Cultivadas , Galinhas , Camundongos , Dados de Sequência Molecular , Coelhos , Proteínas Recombinantes de Fusão , Relação Estrutura-Atividade , Ativação Transcricional/fisiologia
9.
Antimicrob Agents Chemother ; 38(6): 1262-70, 1994 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-8092824

RESUMO

Serratia marcescens S6 produces a pI 9.7 carbapenem-hydrolyzing beta-lactamase that is probably encoded by the chromosome (Y. Yang, P. Wu, and D. M. Livermore, Antimicrob. Agents Chemother. 34:755-758, 1990). A total of 11.3 kb of genomic DNA from this strain was cloned into plasmid pACYC184 in Escherichia coli. After further subclonings, the carbapenem-hydrolyzing beta-lactamase gene (blaSme-1) was sequenced (EMBL accession number Z28968). The gene corresponded to an 882-bp open reading frame which encoded a 294-amino-acid polypeptide. This open reading frame was preceded by a -10 and a -35 region consistent with a putative promoter sequence of members of the family Enterobacteriaceae. This promoter was active in E. coli and S. marcescens, as demonstrated by primer extension analysis. N-terminal sequencing showed that the Sme-1 enzyme had a 27-amino-acid leader peptide and enabled calculation of the molecular mass of the mature protein (29.3 kDa). Sequence alignment revealed that Sme-1 is a class A serine beta-lactamase and not a class B metalloenzyme. The earlier view that the enzyme was zinc dependent was discounted. Among class A beta-lactamases, Sme-1 had the greatest amino acid identity (70%) with the pI 6.9 carbapenem-hydrolyzing beta-lactamase, NMC-A, from Enterobacter cloacae NOR-1. Comparison of these two protein sequences suggested a role for specific residues in carbapenem hydrolysis. The relatedness of Sme-1 to other class A beta-lactamases such as the TEM and SHV types was remote. This work details the sequence of the second carbapenem-hydrolyzing class A beta-lactamase from an enterobacterial species and the first in the genus Serratia.


Assuntos
Carbapenêmicos/metabolismo , Genes Bacterianos , Serratia marcescens/enzimologia , beta-Lactamases/genética , Sequência de Aminoácidos , Sequência de Bases , Clonagem Molecular , Hidrólise , Testes de Sensibilidade Microbiana , Dados de Sequência Molecular , Homologia de Sequência de Aminoácidos , Serratia marcescens/efeitos dos fármacos , Serratia marcescens/genética , beta-Lactamases/química
10.
Int Immunol ; 3(9): 899-906, 1991 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-1718405

RESUMO

We have examined T cell recognition of a recombinant polypeptide (190L), corresponding to a 175-amino-acid-long conserved region of the major surface antigen (p190) of Plasmodium falciparum merozoites. We show that 190L contains a variety of T cell epitopes, and can be recognized in association with many different MHC class II molecules, including HLA-DR, DP, and DQ antigens. Most of the epitope-containing peptides are able to bind to more than one DR, and a single DR molecule can bind to different peptides. These findings, together with the fact that humans are generally heterozygous at the DR, DQ, and DP beta chain loci, suggest that MHC restriction should not be a major constraint in the development of malaria subunit vaccines.


Assuntos
Complexo Principal de Histocompatibilidade/imunologia , Malária Falciparum/imunologia , Plasmodium falciparum/imunologia , Proteínas de Protozoários/imunologia , Linfócitos T/imunologia , Vacinas Sintéticas/imunologia , Sequência de Aminoácidos , Animais , Formação de Anticorpos , Células Apresentadoras de Antígenos , Epitopos/imunologia , Genes MHC da Classe II , Humanos , Ativação Linfocitária/imunologia , Dados de Sequência Molecular , Polimorfismo Genético/imunologia , Proteínas Recombinantes/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...