Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep Methods ; 3(5): 100464, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-37323580

RESUMO

A major challenge to rationally building multi-gene processes in yeast arises due to the combinatorics of combining all of the individual edits into the same strain. Here, we present a precise and multi-site genome editing approach that combines all edits without selection markers using CRISPR-Cas9. We demonstrate a highly efficient gene drive that selectively eliminates specific loci by integrating CRISPR-Cas9-mediated double-strand break (DSB) generation and homology-directed recombination with yeast sexual assortment. The method enables marker-less enrichment and recombination of genetically engineered loci (MERGE). We show that MERGE converts single heterologous loci to homozygous loci at ∼100% efficiency, independent of chromosomal location. Furthermore, MERGE is equally efficient at converting and combining multiple loci, thus identifying compatible genotypes. Finally, we establish MERGE proficiency by engineering a fungal carotenoid biosynthesis pathway and most of the human α-proteasome core into yeast. Therefore, MERGE lays the foundation for scalable, combinatorial genome editing in yeast.


Assuntos
Sistemas CRISPR-Cas , Saccharomyces cerevisiae , Humanos , Sistemas CRISPR-Cas/genética , Saccharomyces cerevisiae/genética , Edição de Genes , Engenharia Genética , Recombinação Homóloga
2.
Dis Model Mech ; 15(6)2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35661208

RESUMO

For decades, budding yeast, a single-cellular eukaryote, has provided remarkable insights into human biology. Yeast and humans share several thousand genes despite morphological and cellular differences and over a billion years of separate evolution. These genes encode critical cellular processes, the failure of which in humans results in disease. Although recent developments in genome engineering of mammalian cells permit genetic assays in human cell lines, there is still a need to develop biological reagents to study human disease variants in a high-throughput manner. Many protein-coding human genes can successfully substitute for their yeast equivalents and sustain yeast growth, thus opening up doors for developing direct assays of human gene function in a tractable system referred to as 'humanized yeast'. Humanized yeast permits the discovery of new human biology by measuring human protein activity in a simplified organismal context. This Review summarizes recent developments showing how humanized yeast can directly assay human gene function and explore variant effects at scale. Thus, by extending the 'awesome power of yeast genetics' to study human biology, humanizing yeast reinforces the high relevance of evolutionarily distant model organisms to explore human gene evolution, function and disease.


Assuntos
Modelos Biológicos , Leveduras , Humanos , Fenótipo , Proteínas , Leveduras/genética
3.
PLoS One ; 14(1): e0210760, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30629707

RESUMO

Calcium (Ca) intakes may affect cardiovascular disease risk by altering body composition (body weight and fat) and serum lipid profile, but results have been inconsistent and the underlying mechanisms are not well understood. The effects of dietary Ca on body composition and lipid metabolism were examined in rats. Male Sprague-Dawley rats were fed high-fat, high-energy diets containing (g/kg) low (0.75Ca, 0.86 ± 0.05; 2Ca, 2.26 ± 0.02), normal (5Ca, 5.55 ± 0.08) or high (10Ca, 11.03 ± 0.17; 20Ca, 21.79 ± 0.15) Ca for 10 weeks. Rats fed the lowest Ca diet (0.75Ca) had lower (p < 0.05) body weight and fat mass compared to other groups. Rats fed the high Ca diets had lower serum total and LDL cholesterol compared to rats fed normal or low Ca. Liver total cholesterol was lower in rats fed high compared to low Ca. In general, liver mRNA expression of genes involved in cholesterol uptake from the circulation (Ldlr), cholesterol synthesis (Hmgcr and Hmgcs1), fatty acid oxidation (Cpt2) and cholesterol esterification (Acat2) were higher in rats fed higher Ca. Apparent digestibility of total trans, saturated, monounsaturated and polyunsaturated fatty acids was lower in rats fed the high compared to the low Ca diets, with the largest effects seen on trans and saturated fatty acids. Fecal excretion of cholesterol and total bile acids was highest in rats fed the highest Ca diet (20Ca). The results suggest little effect of dietary Ca on body composition unless Ca intakes are very low. Decreased bile acid reabsorption and reduced absorption of neutral sterols and saturated and trans fatty acids may contribute to the better serum lipid profile in rats fed higher Ca.


Assuntos
Composição Corporal , Cálcio da Dieta/administração & dosagem , Metabolismo dos Lipídeos , Animais , Ácidos e Sais Biliares/metabolismo , Glicemia/metabolismo , Composição Corporal/genética , Ingestão de Alimentos , Ácidos Graxos/metabolismo , Expressão Gênica , Insulina/sangue , Metabolismo dos Lipídeos/genética , Lipídeos/sangue , Lipogênese/genética , Fígado/anatomia & histologia , Fígado/metabolismo , Masculino , Minerais/sangue , Minerais/urina , Tamanho do Órgão , Hormônio Paratireóideo/sangue , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Esteróis/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...