Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 62(27): 10822-10832, 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37382143

RESUMO

Sr2FeO3F, an oxyfluoride compound with an n = 1 Ruddlesden-Popper structure, was identified as a potential interesting mixed ionic and electronic conductor (MIEC). The phase can be synthesized under a range of different pO2 atmospheres, leading to various degrees of fluorine for oxygen substitution and Fe4+ content. A structural investigation and thorough comparison of both argon- and air-synthesized compounds were performed by combining high-resolution X-ray and electron diffraction, high-resolution scanning transmission electron microscopy, Mössbauer spectroscopy, and DFT calculations. While the argon-synthesized phase shows a well-behaved O/F ordered structure, this study revealed that oxidation leads to averaged large-scale anionic disorder on the apical site. In the more oxidized Sr2FeO3.2F0.8 oxyfluoride, containing 20% of Fe4+, two different Fe positions can be identified with a 32%/68% occupancy (P4/nmm space group). This originates due to the presence of antiphase boundaries between ordered domains within the grains. Relations between site distortion and valence states as well as stability of apical anionic sites (O vs F) are discussed. This study paves the way for further studies on both ionic and electronic transport properties of Sr2FeO3.2F0.8 and its use in MIEC-based devices, such as solid oxide fuel cells.

2.
Nat Commun ; 14(1): 2917, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37217479

RESUMO

Topochemistry enables step-by-step conversions of solid-state materials often leading to metastable structures that retain initial structural motifs. Recent advances in this field revealed many examples where relatively bulky anionic constituents were actively involved in redox reactions during (de)intercalation processes. Such reactions are often accompanied by anion-anion bond formation, which heralds possibilities to design novel structure types disparate from known precursors, in a controlled manner. Here we present the multistep conversion of layered oxychalcogenides Sr2MnO2Cu1.5Ch2 (Ch = S, Se) into Cu-deintercalated phases where antifluorite type [Cu1.5Ch2]2.5- slabs collapsed into two-dimensional arrays of chalcogen dimers. The collapse of the chalcogenide layers on deintercalation led to various stacking types of Sr2MnO2Ch2 slabs, which formed polychalcogenide structures unattainable by conventional high-temperature syntheses. Anion-redox topochemistry is demonstrated to be of interest not only for electrochemical applications but also as a means to design complex layered architectures.

3.
IUCrJ ; 9(Pt 5): 695-704, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36071802

RESUMO

In contrast to perfectly periodic crystals, materials with short-range order produce diffraction patterns that contain both Bragg reflections and diffuse scattering. To understand the influence of short-range order on material properties, current research focuses increasingly on the analysis of diffuse scattering. This article verifies the possibility to refine the short-range order parameters in submicrometre-sized crystals from diffuse scattering in single-crystal electron diffraction data. The approach was demonstrated on Li1.2Ni0.13Mn0.54Co0.13O2, which is a state-of-the-art cathode material for lithium-ion batteries. The intensity distribution of the 1D diffuse scattering in the electron diffraction patterns of Li1.2Ni0.13Mn0.54Co0.13O2 depends on the number of stacking faults and twins in the crystal. A model of the disorder in Li1.2Ni0.13Mn0.54Co0.13O2 was developed and both the stacking fault probability and the percentage of the different twins in the crystal were refined using an evolutionary algorithm in DISCUS. The approach was applied on reciprocal space sections reconstructed from 3D electron diffraction data since they exhibit less dynamical effects compared with in-zone electron diffraction patterns. A good agreement was achieved between the calculated and the experimental intensity distribution of the diffuse scattering. The short-range order parameters in submicrometre-sized crystals can thus successfully be refined from the diffuse scattering in single-crystal electron diffraction data using an evolutionary algorithm in DISCUS.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...