Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Sci ; 10(7): 2144-2152, 2019 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-30881638

RESUMO

This contribution describes the design and synthesis of ß-sheet-mimicking synthetic polymers comprising distinct poly(p-phenylene vinylene) (PPV) and poly(norbornene) (PNB) backbones with multiple turns. The rod-coil-coil-rod tetrablock copolymers, synthesized using ring-opening metathesis polymerization (ROMP) and featuring orthogonal face-to-face π-π stacking and phenyl/perfluorophenyl interactions, show persistent folding both in bulk and at the single molecule level, irrespective of the number of ß-turns. Single molecule polarization studies reveal that the copolymers are more anisotropic than the corresponding homopolymers. Examination of the spectral signatures of the single molecules shows a dominant emissive chromophore in the linked materials compared to the homopolymer. The lack of significant spectral changes of the folded materials along with the existence of a dominant emission spectrum supports the proposed structure of well-aligned, minimally-interacting chromophores. Utilization of this reliably folding, phenyl/perfluorophenyl functionality could provide an extremely useful tool in future functional materials design.

2.
Chem Commun (Camb) ; 54(79): 11204-11207, 2018 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-30230478

RESUMO

We demonstrate that bisulfite can be used for reduction of a highly electrophilic anthraquinone derivative, N,N'-dimethyl-2,6-diaza-9,10-anthraquinonediium (DAAQ), and subsequent autoxidation generates an equivalent of hydrogen peroxide. The mechanism for DAAQ reduction by bisulfite, DAAQ electrochemistry, and use of a simple test strip assay for H2O2, are described.

3.
Chem Sci ; 9(5): 1101-1111, 2018 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-29675155

RESUMO

Conjugated polymers (CPs) possess a wide range of desirable properties, including accessible energetic bandgaps, synthetic versatility, and mechanical flexibility, which make them attractive for flexible and wearable optoelectronic devices. An accurate and comprehensive understanding about the morphology-photophysics relations in CPs lays the groundwork for their development in these applications. However, due to the complex roles of chemical structure, side-chains, backbone, and intramolecular interactions, CPs can exhibit heterogeneity in both their morphology and optoelectronic properties even at the single chain level. This molecular level heterogeneity together with complicated intermolecular interactions found in bulk CP materials severely obscures the deterministic information about the morphology and photophysics at different hierarchy levels. To counter this complexity and offer a clearer picture for the properties of CP materials, we highlight the approach of probing material systems with specific structural features via single molecule/aggregate spectroscopy (SMS). This review article covers recent advances achieved through such an approach regarding the important morphological and photophysical properties of CPs. After a brief review of the typical characteristics of CPs, we present detailed discussions of structurally well-defined model systems of CPs, from manipulated backbones and side-chains, up to nano-aggregates, studied with SMS to offer deterministic relations between morphology and photophysics from single chains building up to bulk states.

4.
J Phys Chem Lett ; 8(13): 2764-2773, 2017 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-28562044

RESUMO

With power conversion efficiencies (PCEs) of <13% and plagued by stability issues, organic photovoltaics (OPVs) still lack wide adoption, despite significant recent advances. Currently, the most progress in OPV device performance is achieved by "trial-and-error" preparation procedures that lead to complex and largely unknown-despite tremendous analytical efforts-morphologies. Here, we demonstrate a proof-of-principle, chemical imaging methodology that combines experimental high spatial sensitivity and chemical selectivity with theoretical modeling, capable of analyzing the three-dimensional composition and morphology of virtually any device. Allowing the precise measurement of composition and direct visualization of film morphology with depth, our approach reveals the intricate buried donor/acceptor (D/A) interface of a model polymer/fullerene system, poly(3-hexylthiphene-2,5-diyl)/[6,6]-phenyl-C61-butyric acid methyl ester (P3HT/PCBM). In particular, our technique is able to identify and quantify the D/A interface length, that is, the extent of molecular mixing at the D/A interface, a parameter crucial for device performance, yet never measured. Extracting this parameter allows demonstrating that, contrary to the general understanding, when starting with a fully mixed D/A phase in our model system, thermal annealing, which is known to substantially (however limited) increase the device performance by phase segregation, does not create but small amounts of pure phases, leaving the device mostly mixed, which limits the performance improvement.

5.
Proc Natl Acad Sci U S A ; 114(20): 5113-5118, 2017 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-28465439

RESUMO

Fluorination represents an important strategy in developing high-performance conjugated polymers for photovoltaic applications. Here, we use regioregular poly(3-ethylhexylthiophene) (P3EHT) and poly(3-ethylhexyl-4-fluorothiophene) (F-P3EHT) as simplified model materials, using single-molecule/aggregate spectroscopy and molecular dynamic simulations, to elucidate the impacts of backbone fluorination on morphology and excitonic coupling on the molecular scale. Despite its high regioregularity, regioregular P3EHT exhibits a rather broad distribution in polymer chain conformation due to the strong steric hindrance of bulky ethylhexyl side chains. This conformational variability results in disordered interchain morphology even between a few chains, prohibiting long-range effective interchain coupling. In stark contrast, the experimental and molecular dynamic calculations reveal that backbone fluorination of F-P3EHT leads to an extended rod-like single-chain conformation and hence highly ordered interchain packing in aggregates. Surprisingly, the ordered and close interchain packing in F-P3EHT does not lead to strong excitonic coupling between the chains but rather to dominant intrachain excitonic coupling that greatly reduces the molecular energetic heterogeneity.

6.
ACS Appl Mater Interfaces ; 9(39): 33478-33483, 2017 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-28481102

RESUMO

We report reversible and irreversible strain effects and interfacial atomic mixing in MAPbI3/ITO under influence of external electric bias and photoillumination. Using conductive-probe atomic force microscopy, we locally applied a bias voltage between the MAPbI3/ITO and the conductive tip and observed local dynamic strain effects and current under conditions of forward bias. We found that the reversible part of the strain is associated with a current spike at the current onset stage and can therefore be related to an electrochemical process accompanied by local molar volume change. Similar partly reversible surface deformation was observed when the tip-sample contact was illuminated by light. Time-of-flight secondary ion mass spectrometry of electrically biased regions revealed massive atomic mixing at the buried MAPbI3/ITO interface, while the top MAPbI3 surface, subjected to strong morphological damage at the tip-surface contact, revealed less significant chemical decomposition.

7.
Nat Commun ; 6: 8246, 2015 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-26391514

RESUMO

Conjugated polymers in the solid state usually exhibit low fluorescence quantum yields, which limit their applications in many areas such as light-emitting diodes. Despite considerable research efforts, the underlying mechanism still remains controversial and elusive. Here, the nature and properties of excited states in the archetypal polythiophene are investigated via aggregates suspended in solvents with different dielectric constants (ɛ). In relatively polar solvents (ɛ>∼ 3), the aggregates exhibit a low fluorescence quantum yield (QY) of 2-5%, similar to bulk films, however, in relatively nonpolar solvents (ɛ<∼ 3) they demonstrate much higher fluorescence QY up to 20-30%. A series of mixed quantum-classical atomistic simulations illustrate that dielectric induced stabilization of nonradiative charge-transfer (CT) type states can lead to similar drastic reduction in fluorescence QY as seen experimentally. Fluorescence lifetime measurement reveals that the CT-type states exist as a competitive channel of the formation of emissive exciton-type states.

8.
J Chem Phys ; 143(2): 024110, 2015 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-26178093

RESUMO

Even for apparently simple condensed-phase processes, bulk measurements of relaxation often yield nonexponential decays; the rate appears to be dispersed over a range of values. Taking averages over individual molecules is an intuitive way to determine whether heterogeneity is responsible for such rate dispersion. However, this method is in fundamental conflict with ergodic behavior and often yields ambiguous results. This paper proposes a new definition of rate heterogeneity for ergodic systems based on multidimensional time correlation functions. Averages are taken over both time and molecules. Because the data set is not subdivided, the signal-to-noise ratio is improved. Moment-based quantities are introduced to quantify the concept of rate dispersion. As a result, quantitative statements about the fraction of the dispersion due to heterogeneity are possible, and the experimental noise is further averaged. The practicality of this approach is demonstrated on single-molecule, linear-dichroism trajectories for R6G in poly(cyclohexyl acrylate) near its glass transition. Single-molecule averaging of these data does not provide useful conclusions [C. Y. Lu and D. A. Vanden Bout, J. Chem. Phys. 125, 124701 (2006)]. However, full-ensemble, two- and three-dimensional averages of the same data give clear and quantitative results: the rate dispersion is 95% ± 5% due to heterogeneity, and the rate exchange is at least 11 times longer than the mean rotation time and possibly much longer. Based on these results, we suggest that the study of heterogeneous materials should not focus on "ensemble" versus "single-molecule" experiments, but on one-dimensional versus multidimensional measurements.

9.
Phys Chem Chem Phys ; 17(16): 10640-7, 2015 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-25804286

RESUMO

Carboxylated oligothiophenes were evaluated as interfacial modifiers between the organic poly(3-hexylthiophene) (P3HT) and inorganic TiO2 layers in bilayer hybrid polymer solar cells. Carboxylated oligothiophenes can be isolated using conventional purification techniques resulting in pure, monodisperse molecules with 100% carboxylation. Device prototypes using carboxylated oligothiophenes as interfacial modifiers showed improved performance in the open-circuit voltage and fill factor over devices using unmodified oligothiophenes as interfacial modifiers. X-ray photoelectron spectroscopy (XPS) studies supported the idea that interface layer adhesion was improved by functionalizing oligothiophenes with a carboxyl moiety. Wide-field fluorescence images revealed that devices made using carboxylated oligothiophenes had fewer aggregates in the P3HT layers atop the modified TiO2 surface. Hysteresis seen in the fluorescence intensity as a function of applied bias, obtained from In-Device Fluorescence Voltage Spectroscopy (ID-FVS), was found to be a diagnostic criterion of the quality of the hybrid interface modification. The best interfaces were found using oligothiophenes functionalized with carboxylates, which created smooth layers on TiO2, and showed no hysteresis, suggesting elimination of interfacial charge traps. However, this hysteresis could be re-introduced by increasing the scan rate of the applied bias, suggesting that smooth P3HT layers created by carboxylated oligothiophene interface modifiers were necessary but not sufficient for sustaining improved photovoltaic properties especially during long-term device operation.

10.
J Phys Chem B ; 119(1): 330-7, 2015 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-25513935

RESUMO

Recent experiments have reported that the self-assembly of conjugated polymers mimicking rod-coil-rod triblock copolymers (BCPs) in selective solvents exhibits unique aggregate morphologies. However, the nature of the arrangement of the polymers within the aggregates and the spatial organization of the aggregates remain an unresolved issue. We report the results of coarse-grained Langevin dynamics simulations, which investigated the self-assembly behavior of rod-coil-rod BCPs in a coil-selective solvent. We observe a rapid formation of cylindrically shaped multichain clusters. The initial stages of formation of the aggregates was seen to be independent of the strength of the solvent selectivity. However, for higher solvent selectivities, the clusters were seen to merge into larger units at later stages. A reduction in rod to coil block ratio was observed to decrease the size and number of clusters. In the limit of a highly concentrated solution, we observe the formation of a networked system of distinct clusters, which however retain the cylindrical arrangement observed at lower polymer concentrations.

11.
J Am Chem Soc ; 136(45): 16023-31, 2014 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-25268474

RESUMO

Excitonic energy migration was studied using single molecule spectroscopy of individual conjugated polymer (CP) chains and aggregates. To probe the effect of interchain morphology on energy migration in CP, tailored interchain morphologies were achieved using solvent vapor annealing to construct polymer aggregates, which were then studied with single aggregate spectroscopy. We report that highly ordered interchain packing in regioregular poly(3-hexylthiophene) (rr-P3HT) enables long-range interchain energy migration, while disordered packing in regiorandom poly(3-hexylthiophene) (rra-P3HT), even in aggregates of just a few chains, can dramatically impede the interchain mechanism. In contrast to rr-P3HT, interchain energy migration in poly(3-(2'-methoxy-5'-octylphenyl)thiophene) (POMeOPT), a polythiophene derivative with bulky side chains, can be completely inhibited. We use simulated structures to show that the reduction in interchain coupling is not due simply to increased packing distance between backbones of different chains, but reflects inhibition of stacking due to side-chain-induced twisting of the contours of individual chains. A competition from intrachain coupling has also been demonstrated by comparing POMeOPT aggregates with different polymer chain sizes.

12.
Angew Chem Int Ed Engl ; 53(20): 5088-92, 2014 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-24715358

RESUMO

Mechanically sensitive biocomposites comprised of fluorescent proteins report stress through distinct pathways. Whereas a composite containing an enhanced yellow fluorescent protein (eYFP) exhibited hypsochromic shifts in its fluorescence emission maxima following compression, a composite containing a modified green fluorescent protein (GFPuv) exhibited fluorescence quenching under the action of mechanical force. These ratio- and intensiometric sensors demonstrate that insights garnered from disparate fields (that is, polymer mechanochemistry and biophysics) can be harnessed to guide the rational design of new classes of biomechanophore-containing materials.


Assuntos
Proteínas de Fluorescência Verde/química , Luz , Física
13.
Small ; 10(9): 1821-9, 2014 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-24482361

RESUMO

Morphological effects on photovoltaic (PV) properties are studied through scanning photocurrent (PC) and photoluminescence (PL) microscopy of a solution processed, polymer blend PV device composed of PFB [poly(9,9'-dioctylfluorene-co-bis-N,N-(4-butylphenyl)-bis-N,N-phenyl-1,4-phenylenediamine] and F8BT [poly(9,9'-dioctylfluorene-co-benzothiadiazole]. As PFB and F8BT have unique absorbance bands, it is possible to selectively excite only F8BT (488 nm) or both PFB and F8BT (408 nm). Local voltage-dependent photocurrent (LVPC) measurements from particular regions of interest in the PV show that the diode characteristics between different morphologies are essentially the same, except in regard to the magnitude of PC generated. A local PL spectrum is measured simultaneously with PC generation at each pixel in the image maps. Through integration of the local PL spectrum over particular wavelength ranges, PL image maps are created of PFB-PL (435 to 475 nm), F8BT-PL (530 to 570 nm), exciplex-PL (620 to 685 nm) and total-PL (entire spectrum). These data allow direct correlation of PC generation with local chemical composition variations within the PV device. PL image maps show morphological variations on the order of 0.5 to 1 µm of alternating PFB-rich and F8BT-rich phases. While illuminating only F8BT (488 nm light), the PFB-rich phases produce the most PC, however, while illuminating both polymers but mostly PFB (408 nm light), the F8BT-rich phases produce the most PC. These results show that in the morphology where the light absorbing material is less concentrated, the PC generation is increased. Additionally, the exciplex-PL is found to not be a significant radiative loss mechanism of charge carriers for PC generation.

14.
J Phys Chem Lett ; 5(13): 2274-82, 2014 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-26279546

RESUMO

Exciton transport lengths in double-walled and bundled cylindrical 3,3'-bis- (2-sulfopropyl)-5,5',6,6'-tetrachloro-1,1'-dioctylbenzimida-carbocyanine (C8S3) J-aggregates were measured using direct imaging of fluorescence from individual aggregates deposited on solid substrates. Regions identified in confocal images were excited with a focused laser spot, and the resulting fluorescence emission was imaged onto an electron multiplying charged coupled device camera. A two-dimensional Gaussian fitting scheme was used to quantitatively compare the excitation beam profile to the broadened aggregate emission profiles. The double-walled tubes exhibit average exciton transport lengths of 140 nm, while exciton transport in the bundled nanotubes was found to be remarkably long, with distances reaching many hundreds of nanometers. A steady-state one-dimensional diffusion model for the broadening of the emission profiles yields diffusion coefficients of 120 nm(2) ps(-1) for the nanotubes and 7000 nm(2) ps(-1) for the aggregate bundles. The level of structural hierarchy dramatically affects the exciton transport capabilities in these artificial light-harvesting systems, and energy migration is not limited to a single dimension in J-aggregate bundles.

15.
Macromol Rapid Commun ; 35(2): 204-209, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23877954

RESUMO

Treatment of a Ni-terminated poly(3-hexylthiophene) (P3HT), generated in situ from 5-chloromagnesio-2-bromo-3-hexylthiophene and Ni(1,3-bis(diphenylphosphino)propane)Cl2, with a perylene diimide-functionalized arylisocyanide monomer effects a chain-extension polymerization to afford a donor-acceptor diblock copolymer using a single catalyst and in a single reaction vessel. The two mechanistically distinct polymerizations proceed in a controlled, chain growth fashion, allowing the molecular weight of both the P3HT and poly(isocyanide) blocks to be tuned by adjusting the initial monomer-to-catalyst ratios. The resulting materials are found to self-assemble into crystalline, lamellar stacks of donor and acceptor components in the solid state, and also exhibit fluorescence quenching in thin films, properties which poise these materials for use in organic photovoltaic applications.


Assuntos
Polímeros/química , Catálise , Cromatografia em Gel , Cristalização , Microscopia de Força Atômica , Polimerização
16.
Chemphyschem ; 14(18): 4143-8, 2013 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-24243782

RESUMO

The spatial arrangement of the side chains of conjugated polymer backbones has critical effects on the morphology and electronic and photophysical properties of the corresponding bulk films. The effect of the side-chain-distribution density on the conformation at the isolated single-polymer-chain level was investigated with regiorandom (rra-) poly(3-hexylthiophene) (P3HT) and poly(3-hexyl-2,5-thienylene vinylene) (P3HTV). Although pure P3HTV films are known to have low fluorescence quantum efficiencies, we observed a considerable increase in fluorescence intensity by dispersing P3HTV in poly(methyl methacrylate) (PMMA), which enabled a single-molecule spectroscopy investigation. With single-molecule fluorescence excitation polarization spectroscopy, we found that rra-P3HTV single molecules form highly ordered conformations. In contrast, rra-P3HT single molecules, display a wide variety of different conformations from isotropic to highly ordered, were observed. The experimental results are supported by extensive molecular dynamics simulations, which reveal that the reduced side-chain-distribution density, that is, the spaced-out side-chain substitution pattern, in rra-P3HTV favors more ordered conformations compared to rra-P3HT. Our results demonstrate that the distribution of side chains strongly affects the polymer-chain conformation, even at the single-molecule level, an aspect that has important implications when interpreting the macroscopic interchain packing structure exhibited by bulk polymer films.

17.
ACS Nano ; 7(10): 9268-75, 2013 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-23991668

RESUMO

It has been proposed that interface morphology affects the recombination rate for electrons and holes at donor-acceptor heterojunctions in thin film organic photovoltaic cells. The optimal morphology is one where there is disorder at the heterointerface and order in the bulk of the thin films, maximizing both the short circuit current and open circuit voltage. We show that an amorphous, buried functionalized molecular squaraine donor layer can undergo an "inverted" quasi-epitaxial growth during postdeposition processing, whereby crystallization is seeded by a subsequently deposited self-assembled nanocrystalline acceptor C60 cap layer. We call this apparently unprecedented growth process from a buried interface "inverse quasi-epitaxy" where the crystallites of these "soft" van der Waals bonded materials are only approximately aligned to those of the cap. The resulting crystalline interface hastens charge recombination, thereby reducing the open circuit voltage in an organic photovoltaic cell. The lattice registration also facilitates interdiffusion of the squaraine donor and C60 acceptor, which dramatically improves the short circuit current. By controlling the extent to which this crystallization occurs, the voltage losses can be minimized, resulting in power conversion efficiencies of ηP = 5.4 ± 0.3% for single-junction and ηP = 8.3 ± 0.4% for tandem small-molecule photovoltaics. This is a general phenomenon with implications for all organic donor-acceptor junctions. That is, epitaxial relationships typically result in a reduction in open circuit voltage that must be avoided in both bilayer and bulk heterojunction organic photovoltaic cells.

18.
ACS Nano ; 7(9): 8199-205, 2013 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-23962095

RESUMO

An elegant method for the electrodeposition of MoS2 thin films using room temperature ionic liquids (RTIL) as an electrolyte was developed. Simple molecular precursors of Mo and S were added in different concentrations to tune the composition and deposition process. The electrodeposition of MoS2 was confirmed with both Raman spectroscopy and XPS. Analysis showed that the electrodeposited MoS2 films form a flower shape morphology with edge active sites that promote the hydrogen evolution reaction (HER). Furthermore, this technique enables selective tuning of the film thickness and demonstrates high photoluminescence activity with a decrease in the number of layers.


Assuntos
Cristalização/métodos , Galvanoplastia/métodos , Medições Luminescentes/métodos , Molibdênio/química , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Sulfetos/química , Catálise , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Tamanho da Partícula , Propriedades de Superfície , Temperatura
19.
ACS Appl Mater Interfaces ; 5(18): 9134-40, 2013 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-23957691

RESUMO

The power conversion efficiency of photovoltaic devices made with ink-deposited Cu(InxGa1-x)Se2 (CIGS) nanocrystal layers can be enhanced by sintering the nanocrystals with a high temperature selenization process. This process, however, can be challenging to control. Here, we report that ink deposition followed by annealing under inert gas and then selenization can provide better control over CIGS nanocrystal sintering and yield generally improved device efficiency. Annealing under argon at 525 °C removes organic ligands and diffuses sodium from the underlying soda lime glass into the Mo back contact to improve the rate and quality of nanocrystal sintering during selenization at 500 °C. Shorter selenization time alleviates excessive MoSe2 formation at the Mo back contact that leads to film delamination, which in turn enables multiple cycles of nanocrystal deposition and selenization to create thicker, more uniform absorber films. Devices with power conversion efficiency greater than 7% are fabricated using the multiple step nanocrystal deposition and sintering process.


Assuntos
Cobre/química , Gálio/química , Índio/química , Nanopartículas/química , Selênio/química , Energia Solar , Vidro/química , Temperatura
20.
J Phys Chem B ; 117(16): 4503-9, 2013 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-23448403

RESUMO

Measurements of lateral bulk heterojunction (BHJ) devices have recently been reported as a means to characterize charge transport and recombination properties within organic photovoltaic (OPV) materials. These structures allow for the direct measurement of the lateral extents of the space charge regions, potential and electric field profiles, current versus voltage characteristics, and other physical and chemical properties. This article describes numerical simulations that show three different transport regimes present within lateral BHJ devices and two different experimental methods, which verify those findings. These measurement techniques utilize typical confocal microscopy tools as well as steady-state current versus voltage measurements on high aspect ratio nanofabricated structures in order to probe the material properties between the electrodes. Experimental results show that the lateral extents of space charge regions within these devices are approximately 1-5 µm, which are related to the drift lengths of the charge carriers, and that the mechanism of bimolecular recombination is shown to be a bulk material property. The results within this article describe a series of methods to evaluate charge transport and recombination along the in-plane direction in BHJ films and provide complementary insights to those obtained from vertical-device-based measurements.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...