Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
EMBO Mol Med ; 15(12): e17932, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-37970627

RESUMO

Viruses are vulnerable as they transmit between hosts, and we aimed to exploit this critical window. We found that the ubiquitous, safe, inexpensive and biodegradable small molecule propylene glycol (PG) has robust virucidal activity. Propylene glycol rapidly inactivates a broad range of viruses including influenza A, SARS-CoV-2 and rotavirus and reduces disease burden in mice when administered intranasally at concentrations commonly found in nasal sprays. Most critically, vaporised PG efficiently abolishes influenza A virus and SARS-CoV-2 infectivity within airborne droplets, potently preventing infection at levels well below those tolerated by mammals. We present PG vapour as a first-in-class non-toxic airborne virucide that can prevent transmission of existing and emergent viral pathogens, with clear and immediate implications for public health.


Assuntos
COVID-19 , Vírus da Influenza A , Influenza Humana , Animais , Camundongos , Humanos , Aerossóis e Gotículas Respiratórios , COVID-19/prevenção & controle , Propilenoglicóis , Mamíferos
3.
Nature ; 623(7988): 842-852, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37853127

RESUMO

Optimum protein function and biochemical activity critically depends on water availability because solvent thermodynamics drive protein folding and macromolecular interactions1. Reciprocally, macromolecules restrict the movement of 'structured' water molecules within their hydration layers, reducing the available 'free' bulk solvent and therefore the total thermodynamic potential energy of water, or water potential. Here, within concentrated macromolecular solutions such as the cytosol, we found that modest changes in temperature greatly affect the water potential, and are counteracted by opposing changes in osmotic strength. This duality of temperature and osmotic strength enables simple manipulations of solvent thermodynamics to prevent cell death after extreme cold or heat shock. Physiologically, cells must sustain their activity against fluctuating temperature, pressure and osmotic strength, which impact water availability within seconds. Yet, established mechanisms of water homeostasis act over much slower timescales2,3; we therefore postulated the existence of a rapid compensatory response. We find that this function is performed by water potential-driven changes in macromolecular assembly, particularly biomolecular condensation of intrinsically disordered proteins. The formation and dissolution of biomolecular condensates liberates and captures free water, respectively, quickly counteracting thermal or osmotic perturbations of water potential, which is consequently robustly buffered in the cytoplasm. Our results indicate that biomolecular condensation constitutes an intrinsic biophysical feedback response that rapidly compensates for intracellular osmotic and thermal fluctuations. We suggest that preserving water availability within the concentrated cytosol is an overlooked evolutionary driver of protein (dis)order and function.


Assuntos
Substâncias Macromoleculares , Proteínas , Solventes , Termodinâmica , Água , Morte Celular , Citosol/química , Citosol/metabolismo , Homeostase , Substâncias Macromoleculares/química , Substâncias Macromoleculares/metabolismo , Concentração Osmolar , Pressão , Proteínas/química , Proteínas/metabolismo , Solventes/química , Solventes/metabolismo , Temperatura , Fatores de Tempo , Água/química , Água/metabolismo
4.
EMBO J ; 40(7): e106745, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33491228

RESUMO

Circadian rhythms are a pervasive property of mammalian cells, tissues and behaviour, ensuring physiological adaptation to solar time. Models of cellular timekeeping revolve around transcriptional feedback repression, whereby CLOCK and BMAL1 activate the expression of PERIOD (PER) and CRYPTOCHROME (CRY), which in turn repress CLOCK/BMAL1 activity. CRY proteins are therefore considered essential components of the cellular clock mechanism, supported by behavioural arrhythmicity of CRY-deficient (CKO) mice under constant conditions. Challenging this interpretation, we find locomotor rhythms in adult CKO mice under specific environmental conditions and circadian rhythms in cellular PER2 levels when CRY is absent. CRY-less oscillations are variable in their expression and have shorter periods than wild-type controls. Importantly, we find classic circadian hallmarks such as temperature compensation and period determination by CK1δ/ε activity to be maintained. In the absence of CRY-mediated feedback repression and rhythmic Per2 transcription, PER2 protein rhythms are sustained for several cycles, accompanied by circadian variation in protein stability. We suggest that, whereas circadian transcriptional feedback imparts robustness and functionality onto biological clocks, the core timekeeping mechanism is post-translational.


Assuntos
Ritmo Circadiano , Criptocromos/metabolismo , Animais , Células Cultivadas , Criptocromos/deficiência , Criptocromos/genética , Drosophila melanogaster , Feminino , Locomoção , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo
5.
Pediatr Res ; 83(1-2): 318-324, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29593249

RESUMO

Epidermolysis bullosa is classified as a genodermatosis, an inherited genetic skin disorder that results in severe, chronic skin blistering with painful and life-threatening complications. Although there is currently no cure for epidermolysis bullosa, concurrent advances in gene and stem cell therapies are converging toward combinatorial therapies that hold the promise of clinically meaningful and lifelong improvement. Recent studies using hematopoietic stem cells and mesenchymal stromal/stem cells to treat epidermolysis bullosa have demonstrated the potential for sustained, effective management of the most severe cases. Furthermore, advances in the use of gene therapy and gene-editing techniques, coupled with the development of induced pluripotent stem cells from patients with epidermolysis bullosa, allow for autologous therapies derived from a renewable population of cells that are patient-specific. Here we describe emerging treatments for epidermolysis bullosa and other genodermatoses, along with a discussion of their benefits and limitations as effective therapies.


Assuntos
Epidermólise Bolhosa Distrófica/genética , Epidermólise Bolhosa Distrófica/terapia , Terapia Genética/métodos , Medicina Regenerativa/métodos , Transplante de Células-Tronco/métodos , Animais , Sistemas CRISPR-Cas , Edição de Genes , Genes Recessivos , Humanos , Queratinócitos/citologia , Camundongos , Pele/metabolismo , Células-Tronco/citologia , Cicatrização
6.
J Invest Dermatol ; 136(10): 2013-2021, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27328306

RESUMO

Recessive dystrophic epidermolysis bullosa (RDEB) is a complex inherited skin disorder caused by loss-of-function mutations in the COL7A1 gene. For an effective treatment of this disorder to be realized, both a thorough understanding of the regulation of COL7A1 and an understanding of the underlying nature of the complications of RDEB are needed. Currently, both posttranscriptional regulation of COL7A1 and the underlying causes of fibrosis in RDEB patients are poorly understood. Here, we describe a mechanism of regulation, to our knowledge previously unknown, by which micro RNA-29 (miR-29) regulates COL7A1 in a complex network: both directly through targeting its 3' untranslated region at two distinct seed regions and indirectly through targeting an essential transcription factor required for basal COL7A1 expression, SP1. In turn, miR-29 itself is regulated by SP1 activity and transforming growth factor-ß signaling. RDEB mice express high levels of transforming growth factor-ß and significantly lower miR-29 compared with wild-type cohorts. The sustained decrease in miR-29 in RDEB skin leads to an increase of miR-29 target genes expressed in the skin, including profibrotic extracellular matrix collagens. Collectively, we identify miR-29 as an important factor in both regulating COL7A1 and inhibiting transforming growth factor-ß-mediated fibrosis.


Assuntos
Colágeno Tipo VII/genética , Epidermólise Bolhosa Distrófica/genética , MicroRNAs/genética , Fator de Crescimento Transformador beta/metabolismo , Animais , Linhagem Celular , Células Cultivadas , Fibrose , Humanos , Camundongos , Fator de Transcrição Sp1/metabolismo
7.
F1000Prime Rep ; 6: 35, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24860657

RESUMO

Epidermolysis bullosa is a group of inherited disorders that can be both systemic and life-threatening. Standard treatments for the most severe forms of this disorder, typically limited to palliative care, are ineffective in reducing the morbidity and mortality due to complications of the disease. Emerging therapies-such as the use of allogeneic cellular therapy, gene therapy, and protein therapy-have all shown promise, but it is likely that several approaches will need to be combined to realize a cure. For recessive dystrophic epidermolysis bullosa, each particular therapeutic approach has added to our understanding of type VII collagen (C7) function and the basic biology surrounding the disease. The efficacy of these therapies and the mechanisms by which they function also give us insight into developing future strategies for treating this and other extracellular matrix disorders.

8.
J Virol ; 84(6): 3116-20, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20071584

RESUMO

Herpes simplex virus type 2 (HSV-2) induces apoptosis in T cells by a caspase-dependent mechanism. Apoptosis can occur via extrinsic (death receptor) and/or intrinsic (mitochondrial) pathways. Here, we show that the initiator caspase for the intrinsic pathway is activated in T cells following HSV-2 exposure. To determine the respective contributions of intrinsic and extrinsic pathways, we assessed apoptosis in Jurkat cells that are deficient in caspase 8 or Fas-associating protein with death domain (FADD) for the extrinsic pathway and in cells deficient in caspase 9 for the intrinsic pathway. Our results indicate HSV-2-induced apoptosis in T cells occurs via the intrinsic pathway.


Assuntos
Apoptose/fisiologia , Caspase 9/metabolismo , Herpesvirus Humano 2/metabolismo , Linfócitos T/enzimologia , Linfócitos T/fisiologia , Caspase 8/genética , Caspase 8/metabolismo , Caspase 9/genética , Inibidores de Caspase , Ativação Enzimática , Proteína de Domínio de Morte Associada a Fas/genética , Proteína de Domínio de Morte Associada a Fas/metabolismo , Fibroblastos/citologia , Fibroblastos/virologia , Herpesvirus Humano 2/patogenicidade , Humanos , Células Jurkat , Oligopeptídeos/metabolismo , Linfócitos T/citologia , Linfócitos T/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...