Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuron ; 109(18): 2864-2883.e8, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34384519

RESUMO

The molecular and cellular mechanisms underlying complex axon morphogenesis are still poorly understood. We report a novel, evolutionary conserved function for the Drosophila Wnk kinase (dWnk) and its mammalian orthologs, WNK1 and 2, in axon branching. We uncover that dWnk, together with the neuroprotective factor Nmnat, antagonizes the axon-destabilizing factors D-Sarm and Axundead (Axed) during axon branch growth, revealing a developmental function for these proteins. Overexpression of D-Sarm or Axed results in axon branching defects, which can be blocked by overexpression of dWnk or Nmnat. Surprisingly, Wnk kinases are also required for axon maintenance of adult Drosophila and mouse cortical pyramidal neurons. Requirement of Wnk for axon maintenance is independent of its developmental function. Inactivation of dWnk or mouse Wnk1/2 in mature neurons leads to axon degeneration in the adult brain. Therefore, Wnk kinases are novel signaling components that provide a safeguard function in both developing and adult axons.


Assuntos
Proteínas do Domínio Armadillo/biossíntese , Axônios/metabolismo , Proteínas do Citoesqueleto/biossíntese , Proteínas de Drosophila/biossíntese , Evolução Molecular , Morfogênese/fisiologia , Proteínas Serina-Treonina Quinases/biossíntese , Animais , Proteínas do Domínio Armadillo/antagonistas & inibidores , Proteínas do Domínio Armadillo/genética , Linhagem Celular Tumoral , Proteínas do Citoesqueleto/antagonistas & inibidores , Proteínas do Citoesqueleto/genética , Proteínas de Drosophila/antagonistas & inibidores , Proteínas de Drosophila/genética , Drosophila melanogaster , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Gravidez , Proteínas Serina-Treonina Quinases/genética
2.
Science ; 364(6439)2019 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-31048465

RESUMO

Central nervous system (CNS) circuit development requires subcellular control of synapse formation and patterning of synapse abundance. We identified the Drosophila membrane-anchored phosphatase of regenerating liver (Prl-1) as an axon-intrinsic factor that promotes synapse formation in a spatially restricted fashion. The loss of Prl-1 in mechanosensory neurons reduced the number of CNS presynapses localized on a single axon collateral and organized as a terminal arbor. Flies lacking all Prl-1 protein had locomotor defects. The overexpression of Prl-1 induced ectopic synapses. In mechanosensory neurons, Prl-1 modulates the insulin receptor (InR) signaling pathway within a single contralateral axon compartment, thereby affecting the number of synapses. The axon branch-specific localization and function of Prl-1 depend on untranslated regions of the prl-1 messenger RNA (mRNA). Therefore, compartmentalized restriction of Prl-1 serves as a specificity factor for the subcellular control of axonal synaptogenesis.


Assuntos
Axônios/fisiologia , Sistema Nervoso Central/crescimento & desenvolvimento , Proteínas de Drosophila/fisiologia , Drosophila melanogaster/crescimento & desenvolvimento , Proteínas Tirosina Fosfatases/fisiologia , Sinapses/fisiologia , Animais , Axônios/enzimologia , Sistema Nervoso Central/enzimologia , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Locomoção/genética , Locomoção/fisiologia , Mecanorreceptores/enzimologia , Fosfatidilinositóis/metabolismo , Domínios Proteicos , Proteínas Tirosina Fosfatases/química , Proteínas Tirosina Fosfatases/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Sinapses/enzimologia
3.
Nucleic Acids Res ; 44(10): e96, 2016 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-26969734

RESUMO

High affinity and specificity are considered essential for affinity reagents and molecularly-targeted therapeutics, such as monoclonal antibodies. However, life's own molecular and cellular machinery consists of lower affinity, highly multivalent interactions that are metastable, but easily reversible or displaceable. With this inspiration, we have developed a DNA-based reagent platform that uses massive avidity to achieve stable, but reversible specific recognition of polyvalent targets. We have previously selected these DNA reagents, termed DeNAno, against various cells and now we demonstrate that DeNAno specific for protein targets can also be selected. DeNAno were selected against streptavidin-, rituximab- and bevacizumab-coated beads. Binding was stable for weeks and unaffected by the presence of soluble target proteins, yet readily competed by natural or synthetic ligands of the target proteins. Thus DeNAno particles are a novel biomolecular recognition agent whose orthogonal use of avidity over affinity results in uniquely stable yet reversible binding interactions.


Assuntos
DNA/química , Nanopartículas/metabolismo , Proteínas/metabolismo , Bevacizumab/metabolismo , DNA/metabolismo , Ligantes , Nanopartículas/química , Ligação Proteica , Rituximab/metabolismo , Estreptavidina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...