Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Cell Environ ; 2024 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-38881245

RESUMO

This study determines the functional role of the plant ultraviolet-B radiation (UV-B) photoreceptor, UV RESISTANCE LOCUS 8 (UVR8) under natural conditions using a large-scale 'synchronized-genetic-perturbation-field-experiment'. Laboratory experiments have demonstrated a role for UVR8 in UV-B responses but do not reflect the complexity of outdoor conditions where 'genotype × environment' interactions can mask laboratory-observed responses. Arabidopsis thaliana knockout mutant, uvr8-7, and the corresponding Wassilewskija wild type, were sown outdoors on the same date at 21 locations across Europe, ranging from 39°N to 67°N latitude. Growth and climatic data were monitored until bolting. At the onset of bolting, rosette size, dry weight, and phenolics and glucosinolates were quantified. The uvr8-7 mutant developed a larger rosette and contained less kaempferol glycosides, quercetin glycosides and hydroxycinnamic acid derivatives than the wild type across all locations, demonstrating a role for UVR8 under field conditions. UV effects on rosette size and kaempferol glycoside content were UVR8 dependent, but independent of latitude. In contrast, differences between wild type and uvr8-7 in total quercetin glycosides, and the quercetin-to-kaempferol ratio decreased with increasing latitude, that is, a more variable UV response. Thus, the large-scale synchronized approach applied demonstrates a location-dependent functional role of UVR8 under natural conditions.

2.
Plant Cell Environ ; 44(10): 3246-3256, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34181245

RESUMO

Inflorescence movements in response to natural gradients of sunlight are frequently observed in the plant kingdom and are suggested to contribute to reproductive success. Although the physiological and molecular bases of light-mediated tropisms in vegetative organs have been thoroughly investigated, the mechanisms that control inflorescence orientation in response to light gradients under natural conditions are not well understood. In this work, we have used a combination of laboratory and field experiments to investigate light-mediated re-orientation of Arabidopsis thaliana inflorescences. We show that inflorescence phototropism is promoted by photons in the UV and blue spectral range (≤500 nm) and depends on multiple photoreceptor families. Experiments under controlled conditions show that UVR8 is the main photoreceptor mediating the phototropic response to narrowband UV-B radiation, and phototropins and cryptochromes control the response to narrowband blue light. Interestingly, whereas phototropins mediate bending in response to low irradiances of blue, cryptochromes are the principal photoreceptors acting at high irradiances. Moreover, phototropins negatively regulate the action of cryptochromes at high irradiances of blue light. Experiments under natural field conditions demonstrate that cryptochromes are the principal photoreceptors acting in the promotion of the heliotropic response of inflorescences under full sunlight.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/fisiologia , Proteínas Cromossômicas não Histona/genética , Citocromos/genética , Fotorreceptores de Plantas/genética , Fototropismo/genética , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Citocromos/metabolismo , Fotorreceptores de Plantas/metabolismo
3.
Plant Cell Physiol ; 62(4): 678-692, 2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-33570567

RESUMO

The force of gravity is a constant environmental factor. Plant shoots respond to gravity through negative gravitropism and gravity resistance. These responses are essential for plants to direct the growth of aerial organs away from the soil surface after germination and to keep an upright posture above ground. We took advantage of the effect of brassinosteroids (BRs) on the two types of graviresponses in Arabidopsis thaliana hypocotyls to disentangle functions of cell wall polymers during etiolated shoot growth. The ability of etiolated Arabidopsis seedlings to grow upward was suppressed in the presence of 24-epibrassinolide (EBL) but enhanced in the presence of brassinazole (BRZ), an inhibitor of BR biosynthesis. These effects were accompanied by changes in cell wall mechanics and composition. Cell wall biochemical analyses, confocal microscopy of the cellulose-specific pontamine S4B dye and cellular growth analyses revealed that the EBL and BRZ treatments correlated with changes in cellulose fibre organization, cell expansion at the hypocotyl base and mannan content. Indeed, a longitudinal reorientation of cellulose fibres and growth inhibition at the base of hypocotyls supported their upright posture whereas the presence of mannans reduced gravitropic bending. The negative effect of mannans on gravitropism is a new function for this class of hemicelluloses. We also found that EBL interferes with upright growth of hypocotyls through their uneven thickening at the base.


Assuntos
Arabidopsis/fisiologia , Brassinosteroides/metabolismo , Celulose/metabolismo , Hipocótilo/fisiologia , Mananas/metabolismo , Arabidopsis/citologia , Arabidopsis/efeitos dos fármacos , Brassinosteroides/farmacologia , Parede Celular/química , Parede Celular/efeitos dos fármacos , Celulose/química , Gravitropismo/fisiologia , Hipocótilo/química , Mananas/química , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/fisiologia , Polissacarídeos/química , Esteroides Heterocíclicos/metabolismo , Esteroides Heterocíclicos/farmacologia , Imagem com Lapso de Tempo
5.
Front Plant Sci ; 11: 597642, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33384704

RESUMO

Ultraviolet (UV) radiation directly affects plants and microorganisms, but also alters the species-specific interactions between them. The distinct bands of UV radiation, UV-A, UV-B, and UV-C have different effects on plants and their associated microorganisms. While UV-A and UV-B mainly affect morphogenesis and phototropism, UV-B and UV-C strongly trigger secondary metabolite production. Short wave (<350 nm) UV radiation negatively affects plant pathogens in direct and indirect ways. Direct effects can be ascribed to DNA damage, protein polymerization, enzyme inactivation and increased cell membrane permeability. UV-C is the most energetic radiation and is thus more effective at lower doses to kill microorganisms, but by consequence also often causes plant damage. Indirect effects can be ascribed to UV-B specific pathways such as the UVR8-dependent upregulated defense responses in plants, UV-B and UV-C upregulated ROS accumulation, and secondary metabolite production such as phenolic compounds. In this review, we summarize the physiological and molecular effects of UV radiation on plants, microorganisms and their interactions. Considerations for the use of UV radiation to control microorganisms, pathogenic as well as non-pathogenic, are listed. Effects can be indirect by increasing specialized metabolites with plant pre-treatment, or by directly affecting microorganisms.

6.
Methods Mol Biol ; 2026: 201-213, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31317415

RESUMO

Many aspects of light-controlled metabolism and development of plants depend on hormonal pathways. Here, a method is described to identify such hormonal dependence in light-regulated processes. A number of compounds-hormones and chemicals which interfere with hormonal pathways-are listed because of their usefulness in pharmacological treatment experiments. As an example for practical use of such compounds, elongation growth is discussed. An experimental setup is described in which plants are grown so that their structures develop predominantly in a two-dimensional plane. Time-lapse imaging is used to follow the plants in time, and image analysis reveals changes in plant morphology.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Luz , Arabidopsis/efeitos da radiação , Brassinosteroides/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Giberelinas/metabolismo , Ácidos Indolacéticos/metabolismo
7.
Plant Cell ; 31(9): 2070-2088, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31289115

RESUMO

In the course of evolution, plants have developed mechanisms that orient their organs toward the incoming light. At the seedling stage, positive phototropism is mainly regulated by phototropin photoreceptors in blue and UV wavelengths. Contrasting with this, we report that UV RESISTANCE LOCUS8 (UVR8) serves as the predominant photoreceptor of UV-B-induced phototropic responses in Arabidopsis (Arabidopsis thaliana) inflorescence stems. We examined the molecular mechanisms underlying this response and our findings support the Blaauw theory (Blaauw, 1919), suggesting rapid differential growth through unilateral photomorphogenic growth inhibition. UVR8-dependent UV-B light perception occurs mainly in the epidermis and cortex, but deeper tissues such as endodermis can also contribute. Within stems, a spatial difference of UVR8 signal causes a transcript and protein increase of transcription factors ELONGATED HYPOCOTYL5 (HY5) and its homolog HY5 HOMOLOG at the UV-B-exposed side. The irradiated side shows (1) strong activation of flavonoid synthesis genes and flavonoid accumulation; (2) increased gibberellin (GA)2-oxidase expression, diminished GA1 levels, and accumulation of the DELLA protein REPRESSOR OF GA1; and (3) increased expression of the auxin transport regulator PINOID, contributing to diminished auxin signaling. Together, the data suggest a mechanism of phototropin-independent inflorescence phototropism through multiple, locally UVR8-regulated hormone pathways.


Assuntos
Proteínas de Arabidopsis/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Inflorescência/metabolismo , Inflorescência/efeitos da radiação , Fototropismo/fisiologia , Fototropismo/efeitos da radiação , Caules de Planta/metabolismo , Caules de Planta/efeitos da radiação , Raios Ultravioleta , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Proteínas Cromossômicas não Histona/genética , Flavonoides/genética , Flavonoides/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Ácidos Indolacéticos , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais
8.
Photochem Photobiol Sci ; 18(5): 1030-1045, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-30838366

RESUMO

The UV Resistance Locus 8 (UVR8) photoreceptor controls UV-B mediated photomorphogenesis in Arabidopsis. The aim of this work is to collect and characterize different molecular reporters of photomorphogenic UV-B responses. Browsing available transcriptome databases, we identified sets of genes responding specifically to this radiation and are controlled by pathways initiated from the UVR8 photoreceptor. We tested the transcriptional changes of several reporters and found that they are regulated differently in different parts of the plant. Our experimental system led us to conclude that the examined genes are not controlled by light piping of UV-B from the shoot to the root or signalling molecules which may travel between different parts of the plant body but by local UVR8 signalling. The initiation of these universal signalling steps can be the induction of Elongated Hypocotyl 5 (HY5) and its homologue, HYH transcription factors. We found that their transcript and protein accumulation strictly depends on UVR8 and happens in a tissue autonomous manner. Whereas HY5 accumulation correlates well with the UVR8 signal across cell layers, the induction of flavonoids depends on both UVR8 signal and a yet to be identified tissue-dependent or developmental determinant.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/química , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Fatores de Transcrição de Zíper de Leucina Básica/química , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/genética , Clonagem Molecular , Microscopia Confocal , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Transdução de Sinais , Raios Ultravioleta
9.
Photochem Photobiol Sci ; 18(5): 970-988, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-30720036

RESUMO

Plants perceive ultraviolet-B (UV-B) radiation through the UV-B photoreceptor UV RESISTANCE LOCUS 8 (UVR8), and initiate regulatory responses via associated signalling networks, gene expression and metabolic pathways. Various regulatory adaptations to UV-B radiation enable plants to harvest information about fluctuations in UV-B irradiance and spectral composition in natural environments, and to defend themselves against UV-B exposure. Given that UVR8 is present across plant organs and tissues, knowledge of the systemic signalling involved in its activation and function throughout the plant is important for understanding the context of specific responses. Fine-scale understanding of both UV-B irradiance and perception within tissues and cells requires improved application of knowledge about UV-attenuation in leaves and canopies, warranting greater consideration when designing experiments. In this context, reciprocal crosstalk among photoreceptor-induced pathways also needs to be considered, as this appears to produce particularly complex patterns of physiological and morphological response. Through crosstalk, plant responses to UV-B radiation go beyond simply UV-protection or amelioration of damage, but may give cross-protection over a suite of environmental stressors. Overall, there is emerging knowledge showing how information captured by UVR8 is used to regulate molecular and physiological processes, although understanding of upscaling to higher levels of organisation, i.e. organisms, canopies and communities remains poor. Achieving this will require further studies using model plant species beyond Arabidopsis, and that represent a broad range of functional types. More attention should also be given to plants in natural environments in all their complexity, as such studies are needed to acquire an improved understanding of the impact of climate change in the context of plant-UV responses. Furthermore, broadening the scope of experiments into the regulation of plant-UV responses will facilitate the application of UV radiation in commercial plant production. By considering the progress made in plant-UV research, this perspective highlights prescient topics in plant-UV photobiology where future research efforts can profitably be focussed. This perspective also emphasises burgeoning interdisciplinary links that will assist in understanding of UV-B effects across organisational scales and gaps in knowledge that need to be filled so as to achieve an integrated vision of plant responses to UV-radiation.


Assuntos
Folhas de Planta/metabolismo , Plantas/metabolismo , Raios Ultravioleta , Fenômenos Ecológicos e Ambientais
10.
Methods Mol Biol ; 1924: 131-139, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30694471

RESUMO

UV-B phototropism in etiolated Arabidopsis seedlings has only been shown recently and needs further exploration. Here we elaborate on how to generate a customized setup with a unilateral UV-B light source, the required plant materials, different growth substrates, and a framework for data analysis.


Assuntos
Fototropismo/efeitos da radiação , Raios Ultravioleta , Arabidopsis/fisiologia , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Plântula/fisiologia , Plântula/efeitos da radiação
11.
Proc Natl Acad Sci U S A ; 115(17): E4130-E4139, 2018 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-29643073

RESUMO

The gaseous hormone ethylene plays a key role in plant growth and development, and it is a major regulator of stress responses. It inhibits vegetative growth by restricting cell elongation, mainly through cross-talk with auxins. However, it remains unknown whether ethylene controls growth throughout all plant tissues or whether its signaling is confined to specific cell types. We employed a targeted expression approach to map the tissue site(s) of ethylene growth regulation. The ubiquitin E3 ligase complex containing Skp1, Cullin1, and the F-box protein EBF1 or EBF2 (SCFEBF1/2) target the degradation of EIN3, the master transcription factor in ethylene signaling. We coupled EBF1 and EBF2 to a number of cell type-specific promoters. Using phenotypic assays for ethylene response and mutant complementation, we revealed that the epidermis is the main site of ethylene action controlling plant growth in both roots and shoots. Suppression of ethylene signaling in the epidermis of the constitutive ethylene signaling mutant ctr1-1 was sufficient to rescue the mutant phenotype, pointing to the epidermis as a key cell type required for ethylene-mediated growth inhibition.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Etilenos/metabolismo , Epiderme Vegetal/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Teste de Complementação Genética , Mutação , Epiderme Vegetal/genética , Reguladores de Crescimento de Plantas/genética
12.
Plant Cell Rep ; 37(5): 809-818, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29502206

RESUMO

KEY MESSAGE: Silver ions increase plasma membrane permeability for water and small organic compounds through their stimulatory effect on plasma membrane calcium channels, with subsequent modulation of intracellular calcium levels and ion homeostasis. The action of silver ions at the plant plasma membrane is largely connected with the inhibition of ethylene signalling thanks to the ability of silver ion to replace the copper cofactor in the ethylene receptor. A link coupling the action of silver ions and cellular auxin efflux has been suggested earlier by their possible direct interaction with auxin efflux carriers or by influencing plasma membrane permeability. Using tobacco BY-2 cells, we demonstrate here that besides a dramatic increase of efflux of synthetic auxins 2,4-dichlorophenoxyacetic acid (2,4-D) and 1-naphthalene acetic acid (NAA), treatment with AgNO3 resulted in enhanced efflux of the cytokinin trans-zeatin (tZ) as well as the auxin structural analogues tryptophan (Trp) and benzoic acid (BA). The application of AgNO3 was accompanied by gradual water loss and plasmolysis. The observed effects were dependent on the availability of extracellular calcium ions (Ca2+) as shown by comparison of transport assays in Ca2+-rich and Ca2+-free buffers and upon treatment with inhibitors of plasma membrane Ca2+-permeable channels Al3+ and ruthenium red, both abolishing the effect of AgNO3. Confocal microscopy of Ca2+-sensitive fluorescence indicator Fluo-4FF, acetoxymethyl (AM) ester suggested that the extracellular Ca2+ availability is necessary to trigger the response to silver ions and that the intracellular Ca2+ pool alone is not sufficient for this effect. Altogether, our data suggest that in plant cells the effects of silver ions originate from the primal modification of the internal calcium levels, possibly by their interaction with Ca2+-permeable channels at the plasma membrane.


Assuntos
Cálcio/metabolismo , Permeabilidade da Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Espaço Intracelular/metabolismo , Nicotiana/citologia , Nicotiana/metabolismo , Células Vegetais/metabolismo , Prata/farmacologia , Linhagem Celular , Membrana Celular/efeitos dos fármacos , Citosol/efeitos dos fármacos , Citosol/metabolismo , Ácidos Indolacéticos/metabolismo , Íons , Células Vegetais/efeitos dos fármacos
13.
Plant Sci ; 268: 54-63, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29362084

RESUMO

Ultraviolet B light (UV-B, 280-315 nm) is the shortest wavelength of the solar spectrum reaching the surface of the Earth. It has profound effects on plants, ranging from growth regulation to severe metabolic changes. Low level UV-B mainly causes photomorphogenic effects while higher levels can induce stress, yet these effects tend to overlap. Here we identified a condition that allows growth reduction without obvious detrimental stress in wild type Arabidopsis rosette plants. This condition was used to study the effects of a daily UV-B dose on plant characteristics of UV-B adapted plants in detail. Exploration of the transcriptome of developing leaves indicated downregulation of genes involved in stomata formation by UV-B, while at the same time genes involved in photoprotective pigment biosynthesis were upregulated. These findings correspond with a decreased stomatal density and increased UV-B absorbing pigments. Gene ontology analysis revealed upregulation of defense related genes and meta-analysis showed substantial overlap of the UV-B regulated transcriptome with transcriptomes of salicylate and jasmonate treated as well as herbivore exposed plants. Feeding experiments showed that caterpillars of Spodoptera littoralis are directly affected by UV-B, while performance of the aphid Myzus persicae is diminished by a plant mediated process.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Arabidopsis/imunologia , Raios Ultravioleta , Animais , Afídeos/fisiologia , Arabidopsis/efeitos da radiação , Biomarcadores/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Herbivoria/efeitos da radiação , Folhas de Planta/genética , Folhas de Planta/efeitos da radiação , Estômatos de Plantas/genética , Estômatos de Plantas/fisiologia , Estômatos de Plantas/efeitos da radiação , Estresse Fisiológico/genética , Estresse Fisiológico/efeitos da radiação , Transcriptoma/genética
14.
Plant Signal Behav ; 13(1): e1422465, 2018 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-29286868

RESUMO

The Elongator complex interacts with RNA polymerase II and via histone acetylation and DNA demethylation facilitates epigenetically the transcription of genes involved in diverse processes in plants, including growth, development, and immune response. Recently, we have shown that the Elongator complex promotes hypocotyl elongation and photomorphogenesis in Arabidopsis thaliana by regulating the photomorphogenesis and growth-related gene network that converges on genes implicated in cell wall biogenesis and hormone signaling. Here, we report that germination in the elo mutant was delayed by 6 h in the dark when compared to the wild type in a time lapse and germination assay. A number of germination-correlated genes were down-regulated in the elo transcriptome, suggesting a transcriptional regulation by Elongator. We also show that the hypocotyl elongation defect observed in the elo mutants in darkness originates very early in the post-germination development and is independent from the germination delay.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Germinação , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulação para Baixo/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Germinação/genética , Mutação/genética , Plântula/genética , Plântula/crescimento & desenvolvimento
15.
J Cell Sci ; 131(2)2018 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-28720596

RESUMO

The Elongator complex (hereafter Elongator) promotes RNA polymerase II-mediated transcript elongation through epigenetic activities such as histone acetylation. Elongator regulates growth, development, immune response and sensitivity to drought and abscisic acid. We demonstrate that elo mutants exhibit defective hypocotyl elongation but have a normal apical hook in darkness and are hyposensitive to light during photomorphogenesis. These elo phenotypes are supported by transcriptome changes, including downregulation of circadian clock components, positive regulators of skoto- or photomorphogenesis, hormonal pathways and cell wall biogenesis-related factors. The downregulated genes LHY, HFR1 and HYH are selectively targeted by Elongator for histone H3K14 acetylation in darkness. The role of Elongator in early seedling development in darkness and light is supported by hypocotyl phenotypes of mutants defective in components of the gene network regulated by Elongator, and by double mutants between elo and mutants in light or darkness signaling components. A model is proposed in which Elongator represses the plant immune response and promotes hypocotyl elongation and photomorphogenesis via transcriptional control of positive photomorphogenesis regulators and a growth-regulatory network that converges on genes involved in cell wall biogenesis and hormone signaling.This article has an associated First Person interview with the first author of the paper.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Escuridão , Morfogênese/efeitos da radiação , Complexos Multiproteicos/metabolismo , Acetilação , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Ritmo Circadiano/fisiologia , Epistasia Genética , Regulação da Expressão Gênica de Plantas , Histonas/metabolismo , Hipocótilo/crescimento & desenvolvimento , Modelos Biológicos , Mutação/genética , Fenótipo , Receptores de Superfície Celular/metabolismo , Plântula/crescimento & desenvolvimento , Plântula/efeitos da radiação , Transcriptoma/genética
16.
J Exp Bot ; 68(15): 4185-4203, 2017 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-28922768

RESUMO

The volatile two-carbon hormone ethylene acts in concert with an array of signals to affect etiolated seedling development. From a chemical screen, we isolated a quinoline carboxamide designated ACCERBATIN (AEX) that exacerbates the 1-aminocyclopropane-1-carboxylic acid-induced triple response, typical for ethylene-treated seedlings in darkness. Phenotypic analyses revealed distinct AEX effects including inhibition of root hair development and shortening of the root meristem. Mutant analysis and reporter studies further suggested that AEX most probably acts in parallel to ethylene signaling. We demonstrated that AEX functions at the intersection of auxin metabolism and reactive oxygen species (ROS) homeostasis. AEX inhibited auxin efflux in BY-2 cells and promoted indole-3-acetic acid (IAA) oxidation in the shoot apical meristem and cotyledons of etiolated seedlings. Gene expression studies and superoxide/hydrogen peroxide staining further revealed that the disrupted auxin homeostasis was accompanied by oxidative stress. Interestingly, in light conditions, AEX exhibited properties reminiscent of the quinoline carboxylate-type auxin-like herbicides. We propose that AEX interferes with auxin transport from its major biosynthesis sites, either as a direct consequence of poor basipetal transport from the shoot meristematic region, or indirectly, through excessive IAA oxidation and ROS accumulation. Further investigation of AEX can provide new insights into the mechanisms connecting auxin and ROS homeostasis in plant development and provide useful tools to study auxin-type herbicides.


Assuntos
Aminoácidos Cíclicos/metabolismo , Arabidopsis/metabolismo , Herbicidas/química , Ácidos Indolacéticos/metabolismo , Quinolonas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Etilenos/metabolismo , Expressão Gênica , Homeostase , Plântula/metabolismo
17.
Planta ; 245(3): 467-489, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28188422

RESUMO

MAIN CONCLUSION: This review highlights that the auxin gradient, established by local auxin biosynthesis and transport, can be controlled by ethylene, and steers seedling growth. A better understanding of the mechanisms in Arabidopsis will increase potential applications in crop species. In dark-grown Arabidopsis seedlings, exogenous ethylene treatment triggers an exaggeration of the apical hook, the inhibition of both hypocotyl and root elongation, and radial swelling of the hypocotyl. These features are predominantly based on the differential cell elongation in different cells/tissues mediated by an auxin gradient. Interestingly, the physiological responses regulated by ethylene and auxin crosstalk can be either additive or synergistic, as in primary root and root hair elongation, or antagonistic, as in hypocotyl elongation. This review focuses on the crosstalk of these two hormones at the seedling stage. Before illustrating the crosstalk, ethylene and auxin biosynthesis, metabolism, transport and signaling are briefly discussed.


Assuntos
Etilenos/metabolismo , Ácidos Indolacéticos/metabolismo , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Transporte Biológico , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Transdução de Sinais
18.
Plant Sci ; 252: 215-221, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27717456

RESUMO

Ultraviolet B (UV-B) light is a part of the solar radiation which has significant effects on plant morphology, even at low doses. In Arabidopsis, many of these morphological changes have been attributed to a specific UV-B receptor, UV resistance locus 8 (UVR8). Recent findings showed that next to phototropin regulated phototropism, UVR8 mediated signaling is able of inducing directional bending towards UV-B light in etiolated seedlings of Arabidopsis, in a phototropin independent manner. In this study, kinetic analysis of phototropic bending was used to evaluate the relative contribution of each of these pathways in UV-B mediated phototropism. Diminishing UV-B light intensity favors the importance of phototropins. Molecular and genetic analyses suggest that UV-B is capable of inducing phototropin signaling relying on phototropin kinase activity and regulation of NPH3. Moreover, enhanced UVR8 responses in the UV-B hypersensitive rup1rup2 mutants interferes with the fast phototropin mediated phototropism. Together the data suggest that phototropins are the most important receptors for UV-B induced phototropism in etiolated seedlings, and a RUP mediated negative feedback pathway prevents UVR8 signaling to interfere with the phototropin dependent response.


Assuntos
Arabidopsis/efeitos da radiação , Fototropinas/fisiologia , Fototropismo , Raios Ultravioleta , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiologia , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Proteínas Cromossômicas não Histona/fisiologia , Cinética , Transdução de Sinal Luminoso , Fototropinas/genética , Fototropinas/metabolismo , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Plântula/efeitos da radiação
19.
J Exp Bot ; 67(15): 4469-82, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27401912

RESUMO

Ultraviolet B (UV-B) light is a portion of solar radiation that has significant effects on the development and metabolism of plants. Effects of UV-B on plants can be classified into photomorphogenic effects and stress effects. These effects largely rely on the control of, and interactions with, hormonal pathways. The fairly recent discovery of the UV-B-specific photoreceptor UV RESISTANCE LOCUS 8 (UVR8) allowed evaluation of the role of downstream hormones, leading to the identification of connections with auxin and gibberellin. Moreover, a substantial overlap between UVR8 and phytochrome responses has been shown, suggesting that part of the responses caused by UVR8 are under PHYTOCHROME INTERACTING FACTOR control. UV-B effects can also be independent of UVR8, and affect different hormonal pathways. UV-B affects hormonal pathways in various ways: photochemically, affecting biosynthesis, transport, and/or signaling. This review concludes that the effects of UV-B on hormonal regulation can be roughly divided in two: inhibition of growth-promoting hormones; and the enhancement of environmental stress-induced defense hormones.


Assuntos
Reguladores de Crescimento de Plantas/fisiologia , Plantas/efeitos da radiação , Proteínas de Arabidopsis/fisiologia , Proteínas Cromossômicas não Histona/fisiologia , Giberelinas/fisiologia , Ácidos Indolacéticos/metabolismo , Fenômenos Fisiológicos Vegetais/efeitos da radiação , Raios Ultravioleta
20.
Plant Physiol Biochem ; 93: 9-17, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25542780

RESUMO

Plants are very well adapted to growth in ultraviolet-B (UV-B) containing light. In Arabidopsis thaliana, many of these adaptations are mediated by the UV-B receptor UV resistance locus 8 (UVR8). Using small amounts of supplementary UV-B light, we observed changes in the shape of rosette leaf blades. Wild type plants show more pronounced epinasty of the blade edges, while this is not the case in uvr8 mutant plants. The UVR8 effect thus mimics the effect of phytochrome (phy) B in red light. In addition, a meta-analysis of transcriptome data indicates that the UVR8 and phyB signaling pathways have over 70% of gene regulation in common. Moreover, in low levels of supplementary UV-B light, mutant analysis revealed that phyB signaling is necessary for epinasty of the blade edges. Analysis of auxin levels and the auxin signal reporter DR5::GUS suggest that the epinasty relies on altered auxin distribution, keeping auxin at the leaf blade edges in the presence of UV-B. Together, our results suggest a co-action of phyB and UVR8 signaling, with auxin as a downstream factor.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Loci Gênicos , Fitocromo B/metabolismo , Folhas de Planta/metabolismo , Raios Ultravioleta , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas Cromossômicas não Histona/genética , Fitocromo B/genética , Folhas de Planta/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...