Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Comput Biol Med ; 154: 106543, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36682179

RESUMO

To facilitate both the detection and the interpretation of findings in chest X-rays, comparison with a previous image of the same patient is very valuable to radiologists. Today, the most common approach for deep learning methods to automatically inspect chest X-rays disregards the patient history and classifies only single images as normal or abnormal. Nevertheless, several methods for assisting in the task of comparison through image registration have been proposed in the past. However, as we illustrate, they tend to miss specific types of pathological changes like cardiomegaly and effusion. Due to assumptions on fixed anatomical structures or their measurements of registration quality, they produce unnaturally deformed warp fields impacting visualization of differences between moving and fixed images. We aim to overcome these limitations, through a new paradigm based on individual rib pair segmentation for anatomy penalized registration. Our method proves to be a natural way to limit the folding percentage of the warp field to 1/6 of the state of the art while increasing the overlap of ribs by more than 25%, implying difference images showing pathological changes overlooked by other methods. We develop an anatomically penalized convolutional multi-stage solution on the National Institutes of Health (NIH) data set, starting from less than 25 fully and 50 partly labeled training images, employing sequential instance memory segmentation with hole dropout, weak labeling, coarse-to-fine refinement and Gaussian mixture model histogram matching. We statistically evaluate the benefits of our method and highlight the limits of currently used metrics for registration of chest X-rays.


Assuntos
Interpretação de Imagem Radiográfica Assistida por Computador , Tomografia Computadorizada por Raios X , Humanos , Raios X , Radiografia , Tomografia Computadorizada por Raios X/métodos , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Costelas/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos
2.
Phys Imaging Radiat Oncol ; 23: 109-117, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35936797

RESUMO

Background and purpose: The geometrical accuracy of auto-segmentation using convolutional neural networks (CNNs) has been demonstrated. This study aimed to investigate the dose-volume impact of differences between automatic and manual OARs for locally advanced (LA) and peripherally located early-stage (ES) non-small cell lung cancer (NSCLC). Material and methods: A single CNN was created for automatic delineation of the heart, lungs, main left and right bronchus, esophagus, spinal cord and trachea using 55/10/40 patients for training/validation/testing. Dice score coefficient (DSC) and 95th percentile Hausdorff distance (HD95) were used for geometrical analysis. A new treatment plan based on the auto-segmented OARs was created for each test patient using 3D for ES-NSCLC (SBRT, 3-8 fractions) and IMRT for LA-NSCLC (24-35 fractions). The correlation between geometrical metrics and dose-volume differences was investigated. Results: The average (±1 SD) DSC and HD95 were 0.82 ± 0.07 and 16.2 ± 22.4 mm, while the average dose-volume differences were 0.5 ± 1.5 Gy (ES) and 1.5 ± 2.8 Gy (LA). The geometrical metrics did not correlate with the observed dose-volume differences (average Pearson for DSC: -0.27 ± 0.18 (ES) and -0.09 ± 0.12 (LA); HD95: 0.1 ± 0.3 mm (ES) and 0.2 ± 0.2 mm (LA)). Conclusions: After post-processing, manual adjustments of automatic contours are only needed for clinically relevant OARs situated close to the tumor or within an entry or exit beam e.g., the heart and the esophagus for LA-NSCLC and the bronchi for ES-NSCLC. The lungs do not need to be checked further in detail.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...