Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
medRxiv ; 2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38352354

RESUMO

Background: Fluorodeoxyglucose positron emission tomography (FDG PET) with glycolytic metabolism suppression plays a pivotal role in diagnosing cardiac sarcoidosis. Reorientation of images to match perfusion datasets is critical and myocardial segmentation enables consistent image scaling and quantification. However, both are challenging and labor intensive. We developed a 3D U-Net deep learning (DL) algorithm for automated myocardial segmentation in cardiac sarcoidosis FDG PET. Methods: The DL model was trained on 316 patients' FDG PET scans, and left ventricular contours derived from perfusion datasets. Qualitative analysis of clinical readability was performed to compare DL segmentation with the current automated method on a 50-patient test subset. Additionally, left ventricle displacement and angulation, as well as SUVmax sampling were compared to inter-user reproducibility results. Results: DL segmentation enhanced readability scores in over 90% of cases compared to the standard segmentation currently used in the software. DL segmentation performed similarly to a trained technologist, surpassing standard segmentation for left ventricle displacement and angulation, as well as correlation of SUVmax. Conclusion: The DL-based automated segmentation tool presents a marked improvement in the processing of cardiac sarcoidosis FDG PET, promising enhanced clinical workflow. This tool holds significant potential for accelerating clinical practice and improving consistency and quality. Further research with varied datasets is warranted to broaden its applicability.

2.
medRxiv ; 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37961713

RESUMO

Impaired microvascular and vasomotor function is a common consequence of aging, diabetes, and other risk factors, and is associated with adverse cardiac outcomes. Such impairments are not readily identified by standard clinical methods of cardiovascular testing such as coronary angiography and noninvasive single photon emission tomography (SPECT) myocardial perfusion imaging (MPI). We hypothesized that signals embedded within stress electrocardiograms (ECGs) identify individuals with microvascular and vasomotor dysfunction. Methods: We developed and validated a novel convolutional neural network (CNN) using stress and rest ECG data (ECG-Flow) to identify patients with impaired myocardial flow reserve (MFR) on quantitative positron emission tomography (PET) MPI (N=3887). Diagnostic accuracy was validated with an internal holdout set of patients undergoing stress PET MPI (N=963). The prognostic association of ECG-Flow with mortality was then evaluated in a separate cohort of patients undergoing SPECT MPI (N=5102). Results: ECG-Flow achieved good diagnostic accuracy for impaired MFR in the holdout PET cohort (AUC, sensitivity, specificity: 0.737, 71.1%, 65.7%). Abnormal ECG-Flow was found to be significantly associated with mortality in both PET holdout and SPECT MPI cohorts (adjusted HR 2.12 [95 ρ CI 1.45, 2.10], ρ = 0.0001, and 2.07 [1.82, 2.36], ρ < 0.0001, respectively). Conclusion: Signals predictive of microvascular and vasomotor dysfunction are embedded in stress ECG waveforms. These signals can be identified by deep learning methods and are related to prognosis in patients undergoing both stress PET and SPECT MPI.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...