Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cytokine ; 123: 154762, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31254927

RESUMO

Pancreatic cancer is an aggressive disease with a poor prognosis for which current standard chemotherapeutic treatments offer little survival benefit. Receptor tyrosine kinases (RTK)s have garnered interest as therapeutic targets to augment or replace standard chemotherapeutic treatments because of their ability to promote cell growth, migration, and survival in various cancers. Met and Ron, which are homologous RTKs activated by the ligands hepatocyte growth factor (HGF) and macrophage stimulating protein (MSP), respectively, are over-activated and display synergistic malignant effects in several cancers. Despite the homology between Met and Ron, studies that have directly compared the functional outcomes of these systems in any context are limited. To address this, we sought to determine if the HGF/Met and MSP/Ron systems produce overlapping or divergent contributions towards a malignant phenotype by performing a characterization of MSP and HGF driven signaling, behavioral, and transcriptomic responses in a primary pancreatic adenocarcinoma (PAAD) cell line in vitro. The impact of dual Met and Ron expression signatures on the overall survival of PAAD patients was also assessed. We found HGF and MSP both encouraged PAAD cell migration, but only HGF increased proliferation. RNA sequencing revealed that the transcriptomic effects of MSP mimicked a narrow subset of the responses induced by HGF. Analysis of clinical data indicated that the strong prognostic value of Met expression in primary PAAD does not appear to be modulated by Ron expression. The relatively reduced magnitude of MSP-dependent effects on primary PAAD cells are consistent with the limited prognostic value of Ron expression in this cancer when compared to Met. Although HGF and MSP produced a differing breadth of responses in vitro, overlapping pro-cancer signaling, behavioral, and transcriptional effects still point to a potential role for the MSP/Ron system in pancreatic cancer.


Assuntos
Adenocarcinoma/metabolismo , Fator de Crescimento de Hepatócito/metabolismo , Neoplasias Pancreáticas/metabolismo , Proteínas Proto-Oncogênicas c-met/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Transdução de Sinais , Adenocarcinoma/genética , Adenocarcinoma/patologia , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Fator de Crescimento de Hepatócito/genética , Humanos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas c-met/genética , Receptores Proteína Tirosina Quinases/genética , Transcriptoma , Neoplasias Pancreáticas
2.
Anticancer Drugs ; 29(4): 295-306, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29389804

RESUMO

Pancreatic cancer is a leading cause of cancer deaths in the USA and is characterized by an exceptionally poor long-term survival rate compared with other major cancers. The hepatocyte growth factor (HGF) and macrophage stimulating protein (MSP) growth factor systems are frequently over-activated in pancreatic cancer and significantly contribute to cancer progression, metastasis, and chemotherapeutic resistance. Small molecules homologous to the 'hinge' region of HGF, which participates in its dimerization and activation, had been developed and shown to bind HGF with high affinity, antagonize HGF's actions, and possess anticancer activity. Encouraged by sequence homology between HGF's hinge region and a similar sequence in MSP, our laboratory previously investigated and determined that these same antagonists could also block MSP-dependent cellular responses. Thus, the purpose of this study was to establish that the dual HGF/MSP antagonist Norleual could inhibit the prosurvival activity imparted by both HGF and MSP to pancreatic cancer cells in vitro, and to determine whether this effect translated into an improved chemotherapeutic impact for gemcitabine when delivered in combination in a human pancreatic cancer xenograft model. Our results demonstrate that Norleual does indeed suppress HGF's and MSP's prosurvival effects as well as sensitizing pancreatic cancer cells to gemcitabine in vitro. Most importantly, treatment with Norleual in combination with gemcitabine markedly inhibited in-vivo tumor growth beyond the suppression observed with gemcitabine alone. These results suggest that dual functional HGF/MSP antagonists like Norleual warrant further development and may offer an improved therapeutic outcome for pancreatic cancer patients.


Assuntos
Antimetabólitos Antineoplásicos/uso terapêutico , Desoxicitidina/análogos & derivados , Fator de Crescimento de Hepatócito/antagonistas & inibidores , Oligopeptídeos/uso terapêutico , Neoplasias Pancreáticas/tratamento farmacológico , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Animais , Antimetabólitos Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Desoxicitidina/farmacologia , Desoxicitidina/uso terapêutico , Sinergismo Farmacológico , Fator de Crescimento de Hepatócito/metabolismo , Humanos , Masculino , Camundongos , Camundongos Nus , Oligopeptídeos/farmacologia , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/terapia , Proteínas Proto-Oncogênicas/metabolismo , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto , Gencitabina
3.
Anticancer Drugs ; 27(8): 766-79, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27314431

RESUMO

Pancreatic cancer is among the leading causes of cancer death in the USA, with limited effective treatment options. A major contributor toward the formation and persistence of pancreatic cancer is the dysregulation of the hepatocyte growth factor (HGF)/Met (HGF receptor) and the macrophage-stimulating protein (MSP)/Ron (MSP receptor) systems. These systems normally mediate a variety of cellular behaviors including proliferation, survival, and migration, but are often overactivated in pancreatic cancer and contribute toward cancer progression. Previous studies have shown that HGF must dimerize to activate Met. Small-molecule antagonists with homology to a 'hinge' region within the putative dimerization domain of HGF have been developed that bind to HGF and block dimerization, therefore inhibiting Met signaling. Because of the structural and sequence homology between MSP and HGF, we hypothesized that the inhibition of HGF by the hinge analogs may extend to MSP. The primary aim of this 'proof-of-concept' study was to determine whether hinge analogs could inhibit cellular responses to both HGF and MSP in pancreatic cancer cells. Our results showed that these compounds inhibited HGF and MSP activity. Hinge analog treatment resulted in decreased Met and Ron activation, and suppressed malignant cell behaviors including proliferation, migration, and invasion in pancreatic cancer cells in vitro. These results suggest that the hinge analogs represent a novel group of molecules that may offer a therapeutic approach for the treatment of pancreatic cancer and warrant further development and optimization.


Assuntos
Antineoplásicos/farmacologia , Fator de Crescimento de Hepatócito/química , Neoplasias Pancreáticas/tratamento farmacológico , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores , Proteínas Proto-Oncogênicas/química , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Animais , Antineoplásicos/química , Comunicação Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Fator de Crescimento de Hepatócito/metabolismo , Fator de Crescimento de Hepatócito/farmacologia , Humanos , Camundongos , Terapia de Alvo Molecular , Oligopeptídeos/farmacologia , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Peptídeos/farmacologia , Proteínas Proto-Oncogênicas c-met/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...