Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Res ; 159: 509-518, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28886502

RESUMO

Contemporary societies are facing a broad range of challenges, from pressures on human health and well-being to natural capital depletion, and the security of food, water and energy. These challenges are deeply intertwined with global processes, such as climate change and with local events such as natural disasters. The EU's research & innovation (R&I) policy is now seeking to address these challenges from a new perspective, with Nature-Based Solutions, and turn them into innovation opportunities that optimise the synergies between nature, society and the economy. Nature-Based Solutions can be an opportunity for innovation, and are here promoted by both policymakers and practitioners as a cost-effective way of creating a greener, more sustainable, and more competitive economy. Since 2013, the European Commission has devoted particular attention to Nature-Based Solutions through consultations and dialogues that sought to make the concept of these solutions more concrete and to define the concept's place within the spectrum of ecosystem-based approaches. In 2014, the Commission launched an expert group, which conducted further analysis, and made recommendations to help increase the use of Nature-Based Solutions and bring nature back into cities. In 2015, a survey was conducted on citizens' views and perceptions of 'Nature in Cities' to provide further insight for future work. Based on these elements and on results from running EU projects, the Commission has developed an R&I agenda for Nature-Based Solutions and has published targeted calls for proposals for large-scale demonstration projects in this field in 2016 and 2017. Additional R&I actions at EU level that promote systemic Nature-Based Solutions and their benefits to cities and territories are planned with the aim to improve the implementation capacity and evidence base for deploying Nature-Based Solutions and developing corresponding future markets. They are also expected to foster an interdisciplinary R&I and stakeholder community and the exchange of good practices in this field, as well as help shaping and implementing international R&I agendas on Nature-Based Solutions.


Assuntos
Cidades , Conservação dos Recursos Naturais , Meio Ambiente , União Europeia
2.
BMC Genet ; 15: 114, 2014 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-25367292

RESUMO

BACKGROUND: Addressing genetic issues in the management of fragmented wild populations of threatened species is one of the most important challenges in conservation biology. Nowadays, a diverse array of molecular methods exists to assess genetic diversity and differentiation of wild populations such as allozymes, dominant markers and co-dominant markers. However it remains worthwhile i) to compare the genetic estimates obtained using those several markers in order to ii) test their relative utility, reliability and relevance and iii) the impact of these results for the design of species-specific conservation measures. RESULTS: Following the successful isolation of 15 microsatellites loci for the cranberry fritillary butterfly, Boloria aquilonaris, we analyzed the genetic diversity and structure of eight populations located in four different landscapes, at both the regional and the landscape scales. We confront results based on microsatellites to those obtained using allozymes and RAPDs on the same samples. Genetic population analyses using different molecular markers indicate that the B. aquilonaris populations are characterized by a weak genetic variation, likely due to low effective population size and low dispersal at the regional scale. This results in inbreeding in some populations, which may have detrimental consequences on their long term viability. However, gene flow within landscape is limited but not inexistent, with some long range movements resulting in low or no isolation by distance. Spatial structuring was detected among the most isolated populations. CONCLUSIONS: The use of allozymes and RAPD are of very limited value to determine population structuring at small spatial (i.e. landscape) scales, microsatellites giving much higher estimate resolution. The use of RAPD data is also limited for evidencing inbreeding. However, coarse-grain spatial structure (i.e. regional scale), and gene flow estimates based on RAPD and microsatellites data gave congruent results. At a time with increasing development of new molecular methods and markers, dominant markers may still be worthwhile to consider in organisms for which no genomic information is available, and for which limited resources are available.


Assuntos
Borboletas/genética , Proteínas de Insetos/genética , Isoenzimas/genética , Repetições de Microssatélites , Migração Animal , Animais , Borboletas/enzimologia , Espécies em Perigo de Extinção , Fluxo Gênico , Marcadores Genéticos , Densidade Demográfica , Técnica de Amplificação ao Acaso de DNA Polimórfico , Análise de Sequência de DNA
3.
J Hered ; 104(2): 234-47, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23132908

RESUMO

Numerous studies addressing the impact of habitat fragmentation on genetic diversity have been performed. In this study, we analyze the effects of a seemingly nonpermeable matrix on the population structure of the forest-dwelling butterfly Pararge aegeria in geographically isolated oases at the northern margin of the Sahara desert using microsatellites, morphological characters, and species distribution modeling. Results from all analyses are mostly congruent and reveal 1) a split between European and North African populations, 2) rather low divergence between populations from the eastern and western part of North Africa (Morocco vs. Tunisia), 3) a lack of differentiation between the oasis and Atlas Mountain populations, 4) as well as among the oasis populations, and 5) no reduction of genetic variability in oasis populations. However, one exception to this general trend resulted from the analyses of wing shape; wings of butterflies from oases are more elongated compared with those from the other habitats. This pattern of phenotypic divergence may suggest a recent colonization of the oasis habitats by individuals, which might be accompanied by a rather dispersive behavior. Species distribution modeling suggests a fairly recent reexpansion of the species' climatic niche starting in the Holocene at about 6000 before present. The combined results indicate a rather recent colonization of the oases by highly mobile individuals from genetically diverse founder populations. The colonization was likely followed by the expansion and persistence of these founder populations under relatively stable environmental conditions. This, together with low rates of gene flow, likely prevented differentiation of populations via drift and led to the maintenance of high genetic diversity.


Assuntos
Borboletas/genética , Clima Desértico , África do Norte , Animais , Teorema de Bayes , Borboletas/anatomia & histologia , Feminino , Variação Genética , Geografia , Masculino , Repetições de Microssatélites , Pigmentação , Dinâmica Populacional , Asas de Animais/anatomia & histologia
4.
Biol Rev Camb Philos Soc ; 87(2): 290-312, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-21929715

RESUMO

Dispersal costs can be classified into energetic, time, risk and opportunity costs and may be levied directly or deferred during departure, transfer and settlement. They may equally be incurred during life stages before the actual dispersal event through investments in special morphologies. Because costs will eventually determine the performance of dispersing individuals and the evolution of dispersal, we here provide an extensive review on the different cost types that occur during dispersal in a wide array of organisms, ranging from micro-organisms to plants, invertebrates and vertebrates. In general, costs of transfer have been more widely documented in actively dispersing organisms, in contrast to a greater focus on costs during departure and settlement in plants and animals with a passive transfer phase. Costs related to the development of specific dispersal attributes appear to be much more prominent than previously accepted. Because costs induce trade-offs, they give rise to covariation between dispersal and other life-history traits at different scales of organismal organisation. The consequences of (i) the presence and magnitude of different costs during different phases of the dispersal process, and (ii) their internal organisation through covariation with other life-history traits, are synthesised with respect to potential consequences for species conservation and the need for development of a new generation of spatial simulation models.


Assuntos
Evolução Biológica , Ecossistema , Modelos Biológicos , Animais , Demografia , Plantas
5.
PLoS One ; 5(11): e13810, 2010 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-21072197

RESUMO

BACKGROUND: Past and current range or spatial expansions have important consequences on population genetic structure. Habitat-use expansion, i.e. changing habitat associations, may also influence genetic population parameters, but has been less studied. Here we examined the genetic population structure of a Palaeartic woodland butterfly Pararge aegeria (Nymphalidae) which has recently colonized agricultural landscapes in NW-Europe. Butterflies from woodland and agricultural landscapes differ in several phenotypic traits (including morphology, behavior and life history). We investigated whether phenotypic divergence is accompanied by genetic divergence between populations of different landscapes along a 700 km latitudinal gradient. METHODOLOGY/PRINCIPAL FINDINGS: Populations (23) along the latitudinal gradient in both landscape types were analyzed using microsatellite and allozyme markers. A general decrease in genetic diversity with latitude was detected, likely due to post-glacial colonization effects. Contrary to expectations, agricultural landscapes were not less diverse and no significant bottlenecks were detected. Nonetheless, a genetic signature of recent colonization is reflected in the absence of clinal genetic differentiation within the agricultural landscape, significantly lower gene flow between agricultural populations (3.494) than between woodland populations (4.183), and significantly higher genetic differentiation between agricultural (0.050) than woodland (0.034) pairwise comparisons, likely due to multiple founder events. Globally, the genetic data suggest multiple long distance dispersal/colonization events and subsequent high intra- and inter-landscape gene flow in this species. Phosphoglucomutase deviated from other enzymes and microsatellite markers, and hence may be under selection along the latitudinal gradient but not between landscape types. Phenotypic divergence was greater than genetic divergence, indicating directional selection on some flight morphology traits. MAIN CONCLUSIONS/SIGNIFICANCE: Clinal differentiation characterizes the population structure within the original woodland habitat. Genetic signatures of recent habitat expansion remain, notwithstanding high gene flow. After differentiation through drift was excluded, both latitude and landscape were significant factors inducing spatially variable phenotypic variation.


Assuntos
Borboletas/crescimento & desenvolvimento , Borboletas/genética , Ecossistema , Alelos , Altitude , Animais , Aspartato Aminotransferases/genética , Biodiversidade , Europa (Continente) , Feminino , Fluxo Gênico , Frequência do Gene , Variação Genética , Genética Populacional , Geografia , Glucose-6-Fosfato Isomerase/genética , Isoenzimas/genética , Masculino , Repetições de Microssatélites/genética , Fosfoglucomutase/genética , Dinâmica Populacional , Seleção Genética
6.
BMC Biol ; 6: 46, 2008 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-18986515

RESUMO

BACKGROUND: Theory predicts that lower dispersal, and associated gene flow, leads to decreased genetic diversity in small isolated populations, which generates adverse consequences for fitness, and subsequently for demography. Here we report for the first time this effect in a well-connected natural butterfly metapopulation with high population densities at the edge of its distribution range. RESULTS: We demonstrate that: (1) lower genetic diversity was coupled to a sharp decrease in adult lifetime expectancy, a key component of individual fitness; (2) genetic diversity was positively correlated to the number of dispersing individuals (indicative of landscape functional connectivity) and adult population size; (3) parameters inferred from capture-recapture procedures (population size and dispersal events between patches) correlated much better with genetic diversity than estimates usually used as surrogates for population size (patch area and descriptors of habitat quality) and dispersal (structural connectivity index). CONCLUSION: Our results suggest that dispersal is a very important factor maintaining genetic diversity. Even at a very local spatial scale in a metapopulation consisting of large high-density populations interconnected by considerable dispersal rates, genetic diversity can be decreased and directly affect the fitness of individuals. From a biodiversity conservation perspective, this study clearly shows the benefits of both in-depth demographic and genetic analyses. Accordingly, to ensure the long-term survival of populations, conservation actions should not be blindly based on patch area and structural isolation. This result may be especially pertinent for species at their range margins, particularly in this era of rapid environmental change.


Assuntos
Borboletas/fisiologia , Variação Genética , Longevidade/genética , Migração Animal , Animais , Borboletas/genética , Ecossistema , Feminino , Heterozigoto , Masculino , Densidade Demográfica
7.
Mol Ecol ; 15(9): 2333-44, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16842409

RESUMO

Functional connectivity is a key factor for the persistence of many specialist species in fragmented landscapes. However, connectivity estimates have rarely been validated by the observation of dispersal movements. In this study, we estimated functional connectivity of a real landscape by modelling dispersal for the endangered natterjack toad (Bufo calamita) using cost distance. Cost distance allows the evaluation of 'effective distances', which are distances corrected for the costs involved in moving between habitat patches in spatially explicit landscapes. We parameterized cost-distance models using the results of our previous experimental investigation of natterjack's movement behaviour. These model predictions (connectivity estimates from the GIS study) were then confronted to genetic-based dispersal rates between natterjack populations in the same landscape using Mantel tests. Dispersal rates between the populations were inferred from variation at six microsatellite loci. Based on these results, we conclude that matrix structure has a strong effect on dispersal rates. Moreover, we found that cost distances generated by habitat preferences explained dispersal rates better than did the Euclidian distances, or the connectivity estimate based on patch-specific resistances (patch viscosity). This study is a clear example of how landscape genetics can validate operational functional connectivity estimates.


Assuntos
Bufonidae/genética , Fluxo Gênico/genética , Animais , Bélgica , Bufonidae/classificação , Variação Genética/genética , Repetições de Microssatélites , Dinâmica Populacional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...