Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 8(16): 8847-54, 2016 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-27072287

RESUMO

Magnetic and multiferroic nanocomposites with two distinct phases have been a topic of intense research for their profound potential applications in the field of spintronics. In addition to growing high-quality phase separated heteroepitaxial nanocomposites, the strain engineering that is conducive to enhance the tunability of material properties, in general, and the magnetic properties, in particular, is of utmost importance in exploring new possibilities. Here, we investigated the magneto-structural coupling between antiferromagnetic BiFeO3 (BFO) and ferrimagnetic CoFe2O4 (CFO) in self-assembled vertically aligned nanocomposites grown on LaAlO3 (LAO) and SrTiO3 (STO) substrates. We found that BFO exhibits tetragonal (T) and rhombohedral (R) structures as the stable phases and CFO has high magnetocrystalline anisotropy even in the form of nanocomposites. The temperature and magnetic field dependent magnetizations of T_BFO-CFO/LAO and R_BFO-CFO/STO nanocomposites primarily demonstrate the magnetoelastic coupling between these variants.

2.
ACS Appl Mater Interfaces ; 7(48): 26504-11, 2015 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-26574919

RESUMO

Magnetic refrigeration, resulting from the magnetocaloric effect of a material around the magnetic phase-transition temperature, is a topic of great interest as it is considered to be an alternate energy solution to conventional vapor-compression refrigeration. The viability of a magnetic refrigeration system for magnetic cooling can be tested by exploiting materials in various forms, from bulk to nanostrucutres. In this study, magnetocaloric properties of self-assembled Mn3O4-La(0.7)Sr(0.3)MnO3 nanocomposites, with varying doping concentrations of Mn3O4 in the form of nanocrystals embedded in the La(0.7)Sr(0.3)MnO3 matrix, are investigated. The temperatures corresponding to the paramagnetic-to-ferromagnetic transitions are higher, and the values of change in magnetic entropy under a magnetic field of 2 T show an enhancement (highest being ∼130%) for the nanocomposites with low doping concentrations of Mn3O4, compared to that of pure La(0.7)Sr(0.3)MnO3 thin films. Relative cooling power remain close to those of La(0.7)Sr(0.3)MnO3. The enhanced magnetic phase-transition temperature and magnetocaloric effect are interpreted and evidenced in the framework of interfacial coupling between Mn3O4 and La(0.7)Sr(0.3)MnO3. This work demonstrates the potentiality of self-assembled nanostructures for magnetic cooling near room temperature under low magnetic fields.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...