Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomolecules ; 14(5)2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38785974

RESUMO

Diabetic retinopathy (DR) affects over 140 million people globally. The mechanisms that lead to blindness are still enigmatic but there is evidence that sustained inflammation and hypoxia contribute to vascular damage. Despite efforts to understand the role of inflammation and microglia in DR's pathology, the contribution of astrocytes to hypoxic responses is less clear. To investigate the role of astrocytes in hypoxia-induced retinopathy, we utilized a 7-day systemic hypoxia model using the GFAP-CreERT2:Rosa26iDTR transgenic mouse line. This allows for the induction of inflammatory reactive astrogliosis following tamoxifen and diphtheria toxin administration. We hypothesize that DTx-induced astrogliosis is neuroprotective during hypoxia-induced retinopathy. Glial, neuronal, and vascular responses were quantified using immunostaining, with antibodies against GFAP, vimentin, IBA-1, NeuN, fibrinogen, and CD31. Cytokine responses were measured in both the brain and serum. We report that while both DTx and hypoxia induced a phenotype of reduced microglia morphological activation, DTx, but not hypoxia, induced an increase in the Müller glia marker vimentin. We did not observe that the combination of DTx and hypoxic treatments exacerbated the signs of reactive glial cells, nor did we observe a significant change in the expression immunomodulatory mediators IL-1ß, IL2, IL-4, IL-5, IL-6, IL-10, IL-18, CCL17, TGF-ß1, GM-CSF, TNF-α, and IFN-γ. Overall, our results suggest that, in this hypoxia model, reactive astrogliosis does not alter the inflammatory responses or cause vascular damage in the retina.


Assuntos
Modelos Animais de Doenças , Células Ependimogliais , Gliose , Camundongos Transgênicos , Microglia , Animais , Gliose/patologia , Gliose/metabolismo , Gliose/induzido quimicamente , Camundongos , Microglia/metabolismo , Microglia/patologia , Microglia/efeitos dos fármacos , Células Ependimogliais/metabolismo , Células Ependimogliais/patologia , Células Ependimogliais/efeitos dos fármacos , Retina/metabolismo , Retina/patologia , Retina/efeitos dos fármacos , Hipóxia/metabolismo , Hipóxia/patologia , Astrócitos/metabolismo , Astrócitos/patologia , Astrócitos/efeitos dos fármacos , Proteína Glial Fibrilar Ácida/metabolismo , Retinopatia Diabética/metabolismo , Retinopatia Diabética/patologia , Citocinas/metabolismo , Vimentina/metabolismo , Vimentina/genética , Toxina Diftérica
2.
J Neuroinflammation ; 21(1): 42, 2024 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-38311721

RESUMO

Diabetic retinopathy (DR) affects about 200 million people worldwide, causing leakage of blood components into retinal tissues, leading to activation of microglia, the resident phagocytes of the retina, promoting neuronal and vascular damage. The microglial receptor, CX3CR1, binds to fractalkine (FKN), an anti-inflammatory chemokine that is expressed on neuronal membranes (mFKN), and undergoes constitutive cleavage to release a soluble domain (sFKN). Deficiencies in CX3CR1 or FKN showed increased microglial activation, inflammation, vascular damage, and neuronal loss in experimental mouse models. To understand the mechanism that regulates microglia function, recombinant adeno-associated viral vectors (rAAV) expressing mFKN or sFKN were delivered to intact retinas prior to diabetes. High-resolution confocal imaging and mRNA-seq were used to analyze microglia morphology and markers of expression, neuronal and vascular health, and inflammatory mediators. We confirmed that prophylactic intra-vitreal administration of rAAV expressing sFKN (rAAV-sFKN), but not mFKN (rAAV-mFKN), in FKNKO retinas provided vasculo- and neuro-protection, reduced microgliosis, mitigated inflammation, improved overall optic nerve health by regulating microglia-mediated inflammation, and prevented fibrin(ogen) leakage at 4 weeks and 10 weeks of diabetes induction. Moreover, administration of sFKN improved visual acuity. Our results elucidated a novel intervention via sFKN gene therapy that provides an alternative pathway to implement translational and therapeutic approaches, preventing diabetes-associated blindness.


Assuntos
Receptor 1 de Quimiocina CX3C , Quimiocina CX3CL1 , Diabetes Mellitus , Animais , Humanos , Camundongos , Quimiocina CX3CL1/genética , Quimiocina CX3CL1/metabolismo , Receptor 1 de Quimiocina CX3C/genética , Receptor 1 de Quimiocina CX3C/metabolismo , Diabetes Mellitus/metabolismo , Fatores Imunológicos , Inflamação/metabolismo , Microglia/metabolismo , Isoformas de Proteínas , Retina/metabolismo
3.
Int J Mol Sci ; 25(3)2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38339005

RESUMO

Diabetic retinopathy (DR)-associated vision loss is a devastating disease affecting the working-age population. Retinal pathology is due to leakage of serum components into retinal tissues, activation of resident phagocytes (microglia), and vascular and neuronal damage. While short-term interventions are available, they do not revert visual function or halt disease progression. The impact of microglial inflammatory responses on the neurovascular unit remains unknown. In this study, we characterized microglia-vascular interactions in an experimental model of DR. Early diabetes presents activated retinal microglia, vascular permeability, and vascular abnormalities coupled with vascular tortuosity and diminished astrocyte and endothelial cell-associated tight-junction (TJ) and gap-junction (GJ) proteins. Microglia exclusively bind to the neuronal-derived chemokine fractalkine (FKN) via the CX3CR1 receptor to ameliorate microglial activation. Using neuron-specific recombinant adeno-associated viruses (rAAVs), we therapeutically overexpressed soluble (sFKN) or membrane-bound (mFKN) FKN using intra-vitreal delivery at the onset of diabetes. This study highlights the neuroprotective role of rAAV-sFKN, reducing microglial activation, vascular tortuosity, fibrin(ogen) deposition, and astrogliosis and supporting the maintenance of the GJ connexin-43 (Cx43) and TJ zonula occludens-1 (ZO-1) molecules. The results also show that microglia-vascular interactions influence the vascular width upon administration of rAAV-sFKN and rAAV-mFKN. Administration of rAAV-sFKN improved visual function without affecting peripheral immune responses. These findings suggest that overexpression of rAAV-sFKN can mitigate vascular abnormalities by promoting glia-neural signaling. sFKN gene therapy is a promising translational approach to reverse vision loss driven by vascular dysfunction.


Assuntos
Quimiocina CX3CL1 , Retinopatia Diabética , Quimiocina CX3CL1/farmacologia , Quimiocina CX3CL1/uso terapêutico , Diabetes Mellitus/metabolismo , Retinopatia Diabética/tratamento farmacológico , Retinopatia Diabética/metabolismo , Microglia/metabolismo , Retina/metabolismo , Transdução de Sinais , Complicações do Diabetes/tratamento farmacológico , Animais , Camundongos
4.
Sci Rep ; 13(1): 19526, 2023 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-37945689

RESUMO

Vascular congestion and coagulopathy have been shown to play a role in human and experimental cerebral malaria (eCM), but little is known about the role of microglia, or microglia-vascular interactions and hypercoagulation during disease progression in this fatal infection. Recent studies show microglia bind to fibrinogen, a glycoprotein involved in thrombosis. An eCM model of Plasmodium chabaudi infection in mice deficient in the regulatory cytokine IL-10 manifests neuropathology, including hypercoagulation with extensive fibrin(ogen) deposition and neuroinflammation. Intravital microscopy and immunofluorescence are applied to elucidate the role of microglia in eCM. Results show microgliosis and coagulopathy occur early in disease at 3 dpi (day post-infection), and both are exacerbated as disease progresses to 7dpi. Vessel associated microglia increase significantly at 7 dpi, and the expression of the microglial chemoattractant CCL5 (RANTES) is increased versus uninfected and localized with fibrin(ogen) in vessels. PLX3397 microglia depletion resulted in rapid behavioral decline, severe hypothermia, and greater increase in vascular coagulopathy. This study suggests that microglia play a prominent role in controlling infection-initiated coagulopathy and supports a model in which microglia play a protective role in cerebral malaria by migrating to and patrolling the cerebral vasculature, potentially regulating degree of coagulation during systemic inflammation.


Assuntos
Malária Cerebral , Camundongos , Humanos , Animais , Malária Cerebral/patologia , Microglia/metabolismo , Inflamação/patologia , Citocinas/metabolismo , Fibrina/metabolismo , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL
5.
Front Immunol ; 14: 1130735, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37033925

RESUMO

Diabetic retinopathy, a microvascular disease characterized by irreparable vascular damage, neurodegeneration and neuroinflammation, is a leading complication of diabetes mellitus. There is no cure for DR, and medical interventions marginally slow the progression of disease. Microglia-mediated inflammation in the diabetic retina is regulated via CX3CR1-FKN signaling, where FKN serves as a calming signal for microglial activation in several neuroinflammatory models. Polymorphic variants of CX3CR1, hCX3CR1I249/M280 , found in 25% of the human population, result in a receptor with lower binding affinity for FKN. Furthermore, disrupted CX3CR1-FKN signaling in CX3CR1-KO and FKN-KO mice leads to exacerbated microglial activation, robust neuronal cell loss and substantial vascular damage in the diabetic retina. Thus, studies to characterize the effects of hCX3CR1I249/M280 -expression in microglia-mediated inflammation in the diseased retina are relevant to identify mechanisms by which microglia contribute to disease progression. Our results show that hCX3CR1I249/M280 mice are significantly more susceptible to microgliosis and production of Cxcl10 and TNFα under acute inflammatory conditions. Inflammation is exacerbated under diabetic conditions and coincides with robust neuronal loss in comparison to CX3CR1-WT mice. Therefore, to further investigate the role of hCX3CR1I249/M280 -expression in microglial responses, we pharmacologically depleted microglia using PLX-5622, a CSF-1R antagonist. PLX-5622 treatment led to a robust (~70%) reduction in Iba1+ microglia in all non-diabetic and diabetic mice. CSF-1R antagonism in diabetic CX3CR1-WT prevented TUJ1+ axonal loss, angiogenesis and fibrinogen deposition. In contrast, PLX-5622 microglia depletion in CX3CR1-KO and hCX3CR1I249/M280 mice did not alleviate TUJ1+ axonal loss or angiogenesis. Interestingly, PLX-5622 treatment reduced fibrinogen deposition in CX3CR1-KO mice but not in hCX3CR1I249/M280 mice, suggesting that hCX3CR1I249/M280 expressing microglia influences vascular pathology differently compared to CX3CR1-KO microglia. Currently CX3CR1-KO mice are the most commonly used strain to investigate CX3CR1-FKN signaling effects on microglia-mediated inflammation and the results in this study indicate that hCX3CR1I249/M280 receptor variants may serve as a complementary model to study dysregulated CX3CR1-FKN signaling. In summary, the protective effects of microglia depletion is CX3CR1-dependent as microglia depletion in CX3CR1-KO and hCX3CR1I249/M280 mice did not alleviate retinal degeneration nor microglial morphological activation as observed in CX3CR1-WT mice.


Assuntos
Diabetes Mellitus Experimental , Microglia , Humanos , Camundongos , Animais , Microglia/metabolismo , Receptor 1 de Quimiocina CX3C/genética , Receptor 1 de Quimiocina CX3C/metabolismo , Diabetes Mellitus Experimental/patologia , Inflamação/metabolismo , Retina/patologia , Proteínas de Transporte/metabolismo , Fibrinogênio/metabolismo
6.
J Neuroinflammation ; 19(1): 300, 2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36517889

RESUMO

Microglia, the resident phagocytes of the retina, are believed to influence the development of retinopathy, but their exact contributions to vascular integrity and neuronal loss are unknown. Therefore, utilizing two models of microglia depletion, we aimed to deplete and repopulate microglia to clarify the contribution of microglia to neuronal loss and vascular damage in the diabetic retina in an STZ-induced model of hyperglycemia. Here, we report that 2 weeks exposure to diphtheria toxin (DTx) in diabetic CX3CR1CreER:R26iDTR transgenic mice induced a 62% increase in Iba1+ microglia associated with an increase in TUJ1+ axonal density and prevention of NeuN+RBPMS+ neuronal loss. Conversely, diabetic PBS controls exhibited robust TUJ1+ axonal and NeuN+RBPMS+ neuronal loss compared to non-diabetic controls. A 2-week recovery period from DTx was associated with a 40% reduction in angiogenesis and an 85% reduction in fibrinogen deposition into the diabetic retina in comparison to diabetic PBS-treated controls. Analysis of microglia morphology and marker expression revealed that following a 2-week recovery period microglia displayed a P2RY12+Ly6C- phenotype and high transformation index (TI) values complimented by a ramified-surveillant morphology closely resembling non-diabetic controls. In contrast, diabetic PBS-treated control mice displayed P2RY12+Ly6C+ microglia, with a 50% reduction in TI values with an amoeboid morphology. To validate these observations were due to microglia depletion, we used PLX-5622 to assess vascular and neuronal damage in the retinas of diabetic mice. Confocal microscopy revealed that PLX-5622 also induced an increase in TUJ1+ axonal density and prevented fibrinogen extravasation into the diabetic retina. mRNAseq gene expression analysis in retinal isolates revealed that PLX-5622-induced microglia depletion and repopulation induced a downregulation in genes associated with microglial activation and phagocytosis, B2m, Cx3cr1, and Trem2, and complement-associated synaptic pruning, C1qa, C1qb, and C1qc. Although the levels of microglia depletion induced with DTx in the CX3CR1CreER:R26iDTR model and those induced with the CSF-1R antagonists are distinct, our results suggest that microglia depletion and replenishment is neuroprotective by inducing the proliferation of a homeostatic microglia pool that supports neuronal and vascular integrity.


Assuntos
Diabetes Mellitus Experimental , Microglia , Camundongos , Animais , Microglia/metabolismo , Diabetes Mellitus Experimental/metabolismo , Retina/metabolismo , Camundongos Transgênicos , Fibrinogênio/metabolismo , Glicoproteínas de Membrana/metabolismo , Receptores Imunológicos/metabolismo
7.
ASN Neuro ; 14: 17590914221131446, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36221892

RESUMO

SUMMARY STATEMENT: Diabetic human and murine retinas revealed pronounced microglial morphological activation and vascular abnormalities associated with inflammation. Pharmacological fibrinogen depletion using ancrod dampened microglial morphology alterations, resolved fibrinogen accumulation, rescued axonal integrity, and reduced inflammation in the diabetic murine retina.


Assuntos
Ancrod , Retina , Animais , Receptor 1 de Quimiocina CX3C/genética , Fibrinogênio , Humanos , Inflamação/tratamento farmacológico , Camundongos , Microglia , Retina/fisiologia
8.
J Neurochem ; 162(5): 430-443, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35560167

RESUMO

Microglia have been implicated in multiple sclerosis (MS) pathogenesis. The fractalkine receptor CX3CR1 limits the activation of pathogenic microglia and the human polymorphic CX3CR1I249/M280 (hCX3CR1I249/M280 ) variant increases disease progression in models of MS. However, the role of hCX3CR1I249/M280 variant on microglial activation and central nervous system repair mechanisms remains unknown. Therefore, using transgenic mice expressing the hCX3CR1I249/M280 variant, we aimed to determine the contribution of defective CX3CR1 signaling to neuroinflammation and remyelination in the cuprizone model of focal demyelination. Here, we report that mice expressing hCX3CR1I249/M280 exhibit marked demyelination and microgliosis following acute cuprizone treatment. Nanostring gene expression analysis in demyelinated lesions showed that hCX3CR1I249/M280 but not CX3CR1-deficient mice up-regulated the cuprizone-induced gene profile linked to inflammatory, oxidative stress, and phagocytic pathways. Although CX3CR1-deficient (CX3CR1-KO) and fractalkine-deficient (FKN-KO) mice displayed a comparable demyelination and microglial activation phenotype to hCX3CR1I249/M280 mice, only CX3CR1-deficient and CX3CR1-WT mice showed significant myelin recovery 1 week from cuprizone withdrawal. Confocal microscopy showed that hCX3CR1I249/M280 variant inhibits the generation of cells involved in myelin repair. Our results show that defective fractalkine signaling contributes to regional differences in demyelination, and suggest that the CX3CR1 pathway activity may be a key mechanism for limiting toxic gene responses in neuroinflammation. Cover Image for this issue: https://doi.org/10.1111/jnc.15416.


Assuntos
Doenças Desmielinizantes , Remielinização , Animais , Receptor 1 de Quimiocina CX3C/genética , Receptor 1 de Quimiocina CX3C/metabolismo , Quimiocina CX3CL1/genética , Quimiocina CX3CL1/metabolismo , Cuprizona/metabolismo , Cuprizona/toxicidade , Doenças Desmielinizantes/induzido quimicamente , Doenças Desmielinizantes/genética , Doenças Desmielinizantes/metabolismo , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Bainha de Mielina , Doenças Neuroinflamatórias
9.
mSphere ; 4(6)2019 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-31852807

RESUMO

Infections triggered by pathogenic fungi cause a serious threat to the public health care system. In particular, an increase of antifungal drug-resistant fungi has resulted in difficulty in treatment. A limited variety of antifungal drugs available to treat patients has left us in a situation where we need to develop new therapeutic approaches that are less prone to development of resistance by pathogenic fungi. In this study, we demonstrate the efficacy of the nanoemulsion NB-201, which utilizes the surfactant benzalkonium chloride, against human-pathogenic fungi. We found that NB-201 exhibited in vitro activity against Candidaalbicans, including both planktonic growth and biofilms. Furthermore, treatments with NB-201 significantly reduced the fungal burden at the infection site and presented an enhanced healing process after subcutaneous infections by multidrug-resistant C. albicans in a murine host system. NB-201 also exhibited in vitro growth inhibition activity against other fungal pathogens, including Cryptococcus spp., Aspergillus fumigatus, and Mucorales Due to the nature of the activity of this nanoemulsion, there is a minimized chance of drug resistance developing, presenting a novel treatment to control fungal wound or skin infections.IMPORTANCE Advances in medicine have resulted in the discovery and implementation of treatments for human disease. While these recent advances have been beneficial, procedures such as solid-organ transplants and cancer treatments have left many patients in an immunocompromised state. Furthermore, the emergence of immunocompromising diseases such as HIV/AIDS or other immunosuppressive medical conditions have opened an opportunity for fungal infections to afflict patients globally. The development of drug resistance in human-pathogenic fungi and the limited array of antifungal drugs has left us in a scenario where we need to develop new therapeutic approaches to treat fungal infections that are less prone to the development of resistance by pathogenic fungi. The significance of our work lies in utilizing a novel nanoemulsion formulation to treat topical fungal infections while minimizing risks of drug resistance development.


Assuntos
Antifúngicos/farmacologia , Compostos de Benzalcônio/farmacologia , Fungos/efeitos dos fármacos , Polissorbatos/farmacologia , Óleo de Soja/farmacologia , Animais , Antifúngicos/administração & dosagem , Compostos de Benzalcônio/administração & dosagem , Candidíase/tratamento farmacológico , Modelos Animais de Doenças , Combinação de Medicamentos , Camundongos , Testes de Sensibilidade Microbiana , Polissorbatos/administração & dosagem , Óleo de Soja/administração & dosagem , Resultado do Tratamento
10.
Autophagy ; 10(6): 1054-70, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24879153

RESUMO

CASP2/caspase 2 plays a role in aging, neurodegeneration, and cancer. The contributions of CASP2 have been attributed to its regulatory role in apoptotic and nonapoptotic processes including the cell cycle, DNA repair, lipid biosynthesis, and regulation of oxidant levels in the cells. Previously, our lab demonstrated CASP2-mediated modulation of autophagy during oxidative stress. Here we report the novel finding that CASP2 is an endogenous repressor of autophagy. Knockout or knockdown of CASP2 resulted in upregulation of autophagy in a variety of cell types and tissues. Reinsertion of Caspase-2 gene (Casp2) in mouse embryonic fibroblast (MEFs) lacking Casp2 (casp2(-/-)) suppresses autophagy, suggesting its role as a negative regulator of autophagy. Loss of CASP2-mediated autophagy involved AMP-activated protein kinase, mechanistic target of rapamycin, mitogen-activated protein kinase, and autophagy-related proteins, indicating the involvement of the canonical pathway of autophagy. The present study also demonstrates an important role for loss of CASP2-induced enhanced reactive oxygen species production as an upstream event in autophagy induction. Additionally, in response to a variety of stressors that induce CASP2-mediated apoptosis, casp2(-/-) cells demonstrate a further upregulation of autophagy compared with wild-type MEFs, and upregulated autophagy provides a survival advantage. In conclusion, we document a novel role for CASP2 as a negative regulator of autophagy, which may provide important insight into the role of CASP2 in various processes including aging, neurodegeneration, and cancer.


Assuntos
Autofagia/fisiologia , Caspase 2/fisiologia , Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Astrócitos/citologia , Astrócitos/metabolismo , Autofagia/genética , Proteína 5 Relacionada à Autofagia , Proteína 7 Relacionada à Autofagia , Caspase 2/deficiência , Caspase 2/genética , Células Cultivadas , Córtex Cerebral/citologia , Córtex Cerebral/metabolismo , Técnicas de Silenciamento de Genes , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Sistema de Sinalização das MAP Quinases , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Proteínas Associadas aos Microtúbulos/deficiência , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Osteoclastos/citologia , Osteoclastos/metabolismo , Estresse Oxidativo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Espécies Reativas de Oxigênio , Proteína Sequestossoma-1 , Serina-Treonina Quinases TOR/metabolismo
11.
Arterioscler Thromb Vasc Biol ; 34(7): 1514-21, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24812321

RESUMO

OBJECTIVE: Metabolic stress primes monocytes for accelerated chemokine-mediated adhesion, migration, and recruitment into vascular lesions by increasing actin remodeling. The mechanism linking metabolic stress to accelerated actin turnover and enhanced monocyte migration was not known. We tested the hypothesis that in metabolically primed monocytes, the acceleration of monocyte chemoattractant protein-1-induced chemotaxis is mediated by the hyperactivation of cofilin. APPROACH AND RESULTS: Metabolic priming was induced by exposing human THP-1 monocytes to diabetic conditions, that is, human native low-density lipoprotein plus high glucose concentrations. In healthy monocytes, monocyte chemoattractant protein-1 induced the phosphorylation and inactivation of cofilin. This response was completely blocked in metabolically primed monocytes but restored by overexpression of the thiol transferase, glutaredoxin 1. Cofilin kinase, LIM kinase 1, and cofilin phosphatase, Slingshot-1L, were not affected by metabolic stress. However, metabolic priming increased 3.8-fold the S-glutathionylation of the Slingshot-1L-binding protein 14-3-3ζ (zeta), resulting in its caspase-dependent degradation. Glutaredoxin 1 overexpression inhibited low-density lipoprotein plus high glucose-induced S-glutathionylation and degradation of 14-3-3ζ. The C25S mutant of 14-3-3ζ was resistant to both S-glutathionylation and degradation induced by low-density lipoprotein plus high glucose. Overexpression of the C25S mutant restored monocyte chemoattractant protein-1-induced cofilin phosphorylation and prevented accelerated migration of metabolically stressed monocytes, suggesting that loss of 14-3-3ζ increases the pool of free Slingshot-1L phosphatase, thereby preventing the phosphorylation and deactivation of cofilin in response to chemokine activation. CONCLUSIONS: By preventing the inactivation of cofilin, metabolic stress-induced degradation of 14-3-3ζ promotes the conversion of blood monocytes into a hypermigratory, proatherogenic phenotype.


Assuntos
Proteínas 14-3-3/metabolismo , Aterosclerose/metabolismo , Quimiotaxia de Leucócito , Monócitos/metabolismo , Estresse Oxidativo , Proteínas 14-3-3/genética , Fatores de Despolimerização de Actina/metabolismo , Animais , Aterosclerose/genética , Quimiocina CCL2/metabolismo , Modelos Animais de Doenças , Glucose/metabolismo , Glutarredoxinas/genética , Glutarredoxinas/metabolismo , Glutationa/metabolismo , Células HEK293 , Humanos , Quinases Lim/metabolismo , Lipoproteínas LDL/metabolismo , Masculino , Camundongos , Camundongos Knockout , Mutação , Oxirredução , Fenótipo , Fosfoproteínas Fosfatases/metabolismo , Fosforilação , Proteólise , Receptores de LDL/deficiência , Receptores de LDL/genética , Fatores de Tempo , Transfecção
12.
PLoS One ; 9(4): e93696, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24691516

RESUMO

Osteoporosis is a silent disease, characterized by a porous bone micro-structure that enhances risk for fractures and associated disabilities. Senile, or age-related osteoporosis (SO), affects both men and women, resulting in increased morbidity and mortality. However, cellular and molecular mechanisms underlying senile osteoporosis are not fully known. Recent studies implicate the accumulation of reactive oxygen species (ROS) and increased oxidative stress as key factors in SO. Herein, we show that loss of caspase-2, a cysteine aspartate protease involved in oxidative stress-induced apoptosis, results in total body and femoral bone loss in aged mice (20% decrease in bone mineral density), and an increase in bone fragility (30% decrease in fracture strength). Importantly, we demonstrate that genetic ablation or selective inhibition of caspase-2 using zVDVAD-fmk results in increased numbers of bone-resorbing osteoclasts and enhanced tartrate-resistant acid phosphatase (TRAP) activity. Conversely, transfection of osteoclast precursors with wild type caspase-2 but not an enzymatic mutant, results in a decrease in TRAP activity. We demonstrate that caspase-2 expression is induced in osteoclasts treated with oxidants such as hydrogen peroxide and that loss of caspase-2 enhances resistance to oxidants, as measured by TRAP activity, and decreases oxidative stress-induced apoptosis of osteoclasts. Moreover, oxidative stress, quantified by assessment of the lipid peroxidation marker, 4-HNE, is increased in Casp2-/- bone, perhaps due to a decrease in antioxidant enzymes such as SOD2. Taken together, our data point to a critical and novel role for caspase-2 in maintaining bone homeostasis by modulating ROS levels and osteoclast apoptosis during conditions of enhanced oxidative stress that occur during aging.


Assuntos
Apoptose/genética , Osso e Ossos/metabolismo , Caspase 2/metabolismo , Osteoclastos/metabolismo , Osteoporose/metabolismo , Fosfatase Ácida , Aldeídos/administração & dosagem , Animais , Osso e Ossos/patologia , Caspase 2/genética , Homeostase/genética , Isoenzimas , Peroxidação de Lipídeos/genética , Camundongos , Osteoclastos/patologia , Osteoporose/patologia , Estresse Oxidativo/genética , Espécies Reativas de Oxigênio , Superóxido Dismutase/metabolismo , Fosfatase Ácida Resistente a Tartarato
13.
Arterioscler Thromb Vasc Biol ; 29(10): 1481-7, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19608973

RESUMO

OBJECTIVE: CD36 has been shown to play a role in atherosclerosis in the apolipoprotein E-knockout (apoE(o)) mouse. We observed no difference in aortic lesion area between Western diet (WD)-fed LDLR(o) and LDLR(o)/CD36(o) mice. The objective was to understand the mechanism of CD36-dependent atherogenesis. METHODS AND RESULTS: ApoE(o) mice transplanted with bone marrow from LDLR(o)/CD36(o) mice had significantly less aortic lesion compared with those transplanted with LDLR(o) marrow. Reciprocal macrophage transfer into hyperlipidemic apoE(o) and LDLR(o) animals showed that foam cell formation induced by in vivo modified lipoproteins was dependent on the lipoprotein, not macrophage type. LDLR(o) and LDLR(o)/CD36(o) mice were fed a cholesterol-enriched diet (HC), and we observed significant lesion inhibition in LDLR(o)/CD36(o) mice. LDL/plasma isolated from HC-fed LDLR(o) mice induced significantly greater jnk phosphorylation, cytokine release, and reactive oxygen species secretion than LDL/plasma from WD-fed LDLR(o) mice, and this was CD36-dependent. HC-fed LDLR(o) mice had higher circulating levels of cytokines than WD-fed mice. CONCLUSIONS: These data support the hypothesis that CD36-dependent atherogenesis is contingent on a proinflammatory milieu that promotes the creation of specific CD36 ligands, not solely hypercholesterolemia, and may explain the greater degree/accelerated rate of atherosclerosis observed in syndromes associated with inflammatory risk.


Assuntos
Aterosclerose/etiologia , Antígenos CD36/fisiologia , Colesterol na Dieta/efeitos adversos , Receptores de LDL/fisiologia , Animais , Apolipoproteínas E/fisiologia , Citocinas/biossíntese , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
14.
Cardiovasc Res ; 78(1): 185-96, 2008 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-18065445

RESUMO

AIMS: The role of scavenger receptors in atherogenesis is controversial as a result of conflicting reports and a recent hypothesis suggesting that scavenger receptor absence would enhance the pro-inflammatory, pro-atherogenic milieu. This study addresses the effect of combined absence of scavenger receptors CD36 and SRA I/II on atherosclerosis lesion development in the apolipoprotein E knock-out (apoE degrees ) model. METHODS: We created background-related strains of apoE degrees , scavenger receptor A I/II knock-out (SRA degrees )/apoE degrees , CD36 knock-out (CD36 degrees )/apoE degrees , and CD36 degrees /SRA degrees /apoE degrees mice that were >99% C57Bl/6. Four-week-old mice were fed a Western diet for 12 weeks and were assessed for lesion burden/morphology, risk factors for atherosclerosis, inflammatory mediators, and macrophage function. RESULTS: There was a 61 and 74% decrease in total aortic lesion area in CD36 degrees /apoE degrees males and females, respectively, compared with apoE degrees controls. The absence of SRA was protective (32% decrease in lesion) in female mice. The combined absence of CD36 and SRA provided no further protection in either gender. Macrophages from mice lacking CD36 had decreased pro-inflammatory characteristics and less migration to a pro-inflammatory stimulus. Plasma levels of cytokines/chemokines showed that CD36 degrees /apoE degrees and CD36 degrees /SRA degrees /apoE degrees mice had a less pro-inflammatory phenotype compared with apoE degrees and SRA degrees /apoE degrees mice. Oblivious mice in the apoE degrees background ruled out potential 'passenger gene' effects in the case of CD36. CONCLUSION: These results provide new insights into the pro-atherogenic mechanisms of CD36 by implicating processes other than modified lipoprotein uptake.


Assuntos
Aorta/patologia , Apolipoproteínas E/metabolismo , Aterosclerose/prevenção & controle , Antígenos CD36/metabolismo , Receptores Depuradores Classe A/metabolismo , Animais , Aorta/imunologia , Aorta/metabolismo , Apolipoproteínas E/deficiência , Apolipoproteínas E/genética , Aterosclerose/imunologia , Aterosclerose/metabolismo , Aterosclerose/patologia , Glicemia/metabolismo , Antígenos CD36/genética , Movimento Celular , Colesterol/sangue , Citocinas/metabolismo , Modelos Animais de Doenças , Ácidos Graxos não Esterificados/sangue , Feminino , Lipoproteínas/sangue , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores Depuradores Classe A/deficiência , Receptores Depuradores Classe A/genética , Fatores de Tempo , Triglicerídeos/sangue
15.
Proc Natl Acad Sci U S A ; 104(16): 6800-5, 2007 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-17420473

RESUMO

The prion protein (PrP) level in muscle has been reported to be elevated in patients with inclusion-body myositis, polymyositis, dermatomyositis, and neurogenic muscle atrophy, but it is not clear whether the elevated PrP accumulation in the muscles is sufficient to cause muscle diseases. We have generated transgenic mice with muscle-specific expression of PrP under extremely tight regulation by doxycycline, and we have demonstrated that doxycycline-induced overexpression of PrP strictly limited to muscles leads to a myopathy characterized by increased variation of myofiber size, centrally located nuclei, and endomysial fibrosis, in the absence of intracytoplasmic inclusions, rimmed vacuoles, or any evidence of a neurogenic disorder. The PrP-induced myopathy correlates with accumulation of an N-terminal truncated PrP fragment in the muscle, and the muscular PrP displayed consistent mild resistance to protease digestion. Our findings indicate that overexpression of wild-type PrP in skeletal muscles is sufficient to cause a primary myopathy with no signs of peripheral neuropathy, possibly due to accumulation of a cytotoxic truncated form of PrP and/or PrP aggregation.


Assuntos
Regulação da Expressão Gênica , Músculo Esquelético/metabolismo , Doenças Musculares/genética , Doenças Musculares/metabolismo , Proteínas PrPC/biossíntese , Proteínas PrPC/genética , Animais , Doxiciclina/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Camundongos Transgênicos , Músculo Esquelético/efeitos dos fármacos , Doenças Musculares/induzido quimicamente
16.
J Neurosci ; 25(35): 7944-9, 2005 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-16135751

RESUMO

Chronic wasting disease (CWD), a prion disease affecting free-ranging and captive cervids (deer and elk), is widespread in the United States and parts of Canada. The large cervid population, the popularity of venison consumption, and the apparent spread of the CWD epidemic are likely resulting in increased human exposure to CWD in the United States. Whether CWD is transmissible to humans, as has been shown for bovine spongiform encephalopathy (the prion disease of cattle), is unknown. We generated transgenic mice expressing the elk or human prion protein (PrP) in a PrP-null background. After intracerebral inoculation with elk CWD prion, two lines of "humanized" transgenic mice that are susceptible to human prions failed to develop the hallmarks of prion diseases after >657 and >756 d, respectively, whereas the "cervidized" transgenic mice became infected after 118-142 d. These data indicate that there is a substantial species barrier for transmission of elk CWD to humans.


Assuntos
Modelos Animais de Doenças , Doença de Emaciação Crônica/genética , Doença de Emaciação Crônica/transmissão , Animais , Encéfalo/patologia , Cervos , Transmissão de Doença Infecciosa , Humanos , Camundongos , Camundongos Transgênicos , Taxa de Sobrevida , Doença de Emaciação Crônica/mortalidade , Doença de Emaciação Crônica/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...