Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neurosci Bull ; 38(4): 373-385, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35294713

RESUMO

Mitochondrial reactive oxygen species (mROS) that are overproduced by mitochondrial dysfunction are linked to pathological conditions including sensory abnormalities. Here, we explored whether mROS overproduction induces itch through transient receptor potential canonical 3 (TRPC3), which is sensitive to ROS. Intradermal injection of antimycin A (AA), a selective inhibitor of mitochondrial electron transport chain complex III for mROS overproduction, produced robust scratching behavior in naïve mice, which was suppressed by MitoTEMPO, a mitochondria-selective ROS scavenger, and Pyr10, a TRPC3-specific blocker, but not by blockers of TRPA1 or TRPV1. AA activated subsets of trigeminal ganglion neurons and also induced inward currents, which were blocked by MitoTEMPO and Pyr10. Besides, dry skin-induced chronic scratching was relieved by MitoTEMPO and Pyr10, and also by resveratrol, an antioxidant. Taken together, our results suggest that mROS elicit itch through TRPC3, which may underlie chronic itch, representing a potential therapeutic target for chronic itch.


Assuntos
Mitocôndrias , Prurido , Animais , Antioxidantes/farmacologia , Camundongos , Prurido/induzido quimicamente , Espécies Reativas de Oxigênio/metabolismo , Canal de Cátion TRPA1
2.
Pain ; 160(5): 1059-1069, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31008815

RESUMO

The taste of sucrose is commonly used to provide pain relief in newborn humans and is innately analgesic to neonatal rodents. In adulthood, sucrose remains a strong motivator to feed, even in potentially hazardous circumstances (ie, threat of tissue damage). However, the neurobiological mechanisms of this endogenous reward-pain interaction are unclear. We have developed a simple model of sucrose drinking-induced analgesia in Sprague-Dawley rats (6-10 weeks old) and have undertaken a behavioral and pharmacological characterization using the Hargreaves' test of hind-paw thermal sensitivity. Our results reveal an acute, potent, and robust inhibitory effect of sucrose drinking on thermal nociceptive behaviour that unlike the phenomenon in neonates is independent of endogenous opioid signalling and does not seem to operate through classical descending inhibition of the spinal cord circuitry. Experience of sucrose drinking had a conditioning effect whereby the apparent expectancy of sucrose enabled water alone (in euvolemic animals) to elicit a short-lasting placebo-like analgesia. Sweet taste alone, however, was insufficient to elicit analgesia in adult rats intraorally perfused with sucrose. Instead, the sucrose analgesia phenomenon only appeared after conditioning by oral perfusion in chronically cannulated animals. This sucrose analgesia was completely prevented by systemic dosing of the endocannabinoid CB1 receptor antagonist rimonabant. These results indicate the presence of an endogenous supraspinal analgesic circuit that is recruited by the context of rewarding drinking and is dependent on endocannabinoid signalling. We propose that this hedonic sucrose-drinking model may be useful for further investigation of the supraspinal control of pain by appetite and reward.


Assuntos
Hiperalgesia/terapia , Limiar da Dor/efeitos dos fármacos , Medula Espinal/fisiologia , Sacarose/uso terapêutico , Edulcorantes/uso terapêutico , Animais , Antagonistas de Receptores de Canabinoides/farmacologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Comportamento de Ingestão de Líquido/efeitos dos fármacos , Adjuvante de Freund/toxicidade , Temperatura Alta/efeitos adversos , Hiperalgesia/induzido quimicamente , Injeções Espinhais/métodos , Masculino , Naloxona/farmacologia , Antagonistas de Entorpecentes/farmacologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Ratos Sprague-Dawley , Tempo de Reação/efeitos dos fármacos , Rimonabanto/farmacologia , Medula Espinal/efeitos dos fármacos , Privação de Água/fisiologia
3.
Neuroscience ; 335: 54-63, 2016 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-27555550

RESUMO

Accumulating evidence indicates that odontoblasts act as sensor cells, capable of triggering action potentials in adjacent pulpal nociceptive axons, suggesting a paracrine signaling via a currently unknown mediator. Since glutamate can mediate signaling by non-neuronal cells, and peripheral axons may express glutamate receptors (GluR), we hypothesized that the expression of high levels of glutamate, and of sensory receptors in odontoblasts, combined with an expression of GluR in adjacent pulpal axons, is the morphological basis for odontoblastic sensory signaling. To test this hypothesis, we investigated the expression of glutamate, the thermo- and mechanosensitive ion channels transient receptor potential vanilloid 1 (TRPV1), transient receptor potential ankyrin 1 (TRPA1), and TWIK-1-related K+channel (TREK-1), and the glutamate receptor mGluR5, in a normal rat dental pulp, and following dentin injury. We also examined the glutamate release from odontoblast in cell culture. Odontoblasts were enriched with glutamate, at the level as high as in adjacent pulpal axons, and showed immunoreactivity for TRPV1, TRPA1, and TREK-1. Pulpal sensory axons adjacent to odontoblasts expressed mGluR5. Both the levels of glutamate in odontoblasts, and the expression of mGluR5 in nearby axons, were upregulated following dentin injury. The extracellular glutamate concentration was increased significantly after treating of odontoblast cell line with calcium permeable ionophore, suggesting glutamate release from odontoblasts. These findings lend morphological support to the hypothesis that odontoblasts contain glutamate as a potential neuroactive substance that may activate adjacent pulpal axons, and thus contribute to dental pain and hypersensitivity.


Assuntos
Axônios/metabolismo , Polpa Dentária/metabolismo , Dentina/lesões , Odontoblastos/metabolismo , Animais , Polpa Dentária/lesões , Ácido Glutâmico/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Ratos Sprague-Dawley , Células Receptoras Sensoriais/metabolismo , Canais de Cátion TRPV/metabolismo
4.
Exp Neurobiol ; 21(2): 68-74, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22792027

RESUMO

The long belief that dental primary afferent (DPA) neurons are entirely composed of nociceptive neurons has been challenged by several anatomical and functional investigations. In order to characterize non-nociceptivepopulation among DPA neurons, retrograde transport fluorescent dye was placed in upper molars of rats and immunohistochemical detection of peripherin and neurofilament 200 in the labeled trigeminal ganglia was performed. As the results, majority ofDPA neurons were peripherin-expressing small-sized neurons, showing characteristic ofnociceptive C-fibers. However, 25.7% of DPA were stained with antibody against neurofilament 200, indicating significant portion of DPA neurons are related to large myelinated Aß fibers. There were a small number of neurons thatexpressed both peripherin and neurofilament 200, suggestive of Aδ fibers. The possible transition of neurochemical properties by neuronal injury induced by retrograde labeling technique was ruled out by detection of minimal expression of neuronal injury marker, ATF-3. These results suggest that in addition to the large population of C-fiber-related nociceptive neurons, a subset of DPA neurons is myelinated large neurons, which is related to low-threshold mechanosensitive Aß fibers. We suggest that these Aß fiber-related neurons might play a role as mechanotransducers of fluid movement within dentinal tubules.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...