Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Org Process Res Dev ; 27(7): 1185-1197, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-38046274

RESUMO

Recent work in drug discovery has shown that selectively deuterated small molecules can improve the safety and efficacy for active pharmaceutical ingredients. The advantages derive from changes in metabolism resulting from the kinetic isotope effect when deuterium is substituted for a hydrogen atom at a structural position where rate limiting C-H bond breaking occurs. This application has pushed the development of precision deuteration strategies in synthetic chemistry that can install deuterium atoms with high regioselectivity and with stereocontrol. Copper-catalyzed alkene transfer hydrodeuteration chemistry has recently been shown to have high stereoselectivity for deuteration at the metabolically important benzyl C-H position. In this case, stereocontrol results in the creation of enantioisotopomers-molecules that are chiral solely by virtue of the deuterium substitution-and chiral analysis techniques are needed to assess the reaction selectivity. It was recently shown that chiral tag molecular rotational resonance (MRR) spectroscopy provides a routine way to measure the enantiomeric excess and establish the absolute configuration of enantioisotopomers. High-throughput implementations of chiral tag MRR spectroscopy are needed to support optimization of the chemical synthesis. A measurement methodology for high-throughput chiral analysis is demonstrated in this work. The high-throughput ee measurements are performed using cavity-enhanced MRR spectroscopy, which reduces measurement times and sample consumption by more than an order-of-magnitude compared to the previous enantioisotopomer analysis using a broadband MRR spectrometer. It is also shown that transitions for monitoring the enantiomers can be selected from a broadband rotational spectrum without the need for spectroscopic analysis. The general applicability of chiral tag MRR spectroscopy is illustrated by performing chiral analysis on six enantioisotopomer reaction products using a single molecule as the tag for chiral discrimination.

2.
JACS Au ; 3(6): 1583-1589, 2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37388686

RESUMO

A highly regio- and chemoselective Cu-catalyzed aryl alkyne transfer hydrodeuteration to access a diverse scope of aryl alkanes precisely deuterated at the benzylic position is described. The reaction benefits from a high degree of regiocontrol in the alkyne hydrocupration step, leading to the highest selectivities reported to date for an alkyne transfer hydrodeuteration reaction. Only trace isotopic impurities are formed under this protocol, and analysis of an isolated product by molecular rotational resonance spectroscopy confirms that high isotopic purity products can be generated from readily accessible aryl alkyne substrates.

3.
Chirality ; 35(11): 856-883, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37277968

RESUMO

Chiral tag molecular rotational resonance (MRR) spectroscopy is used to assign the absolute configuration of molecules that are chiral by virtue of deuterium substitution. Interest in the improved performance of deuterated active pharmaceutical ingredients has led to the development of precision deuteration reactions. These reactions often generate enantioisotopomer reaction products that pose challenges for chiral analysis. Chiral tag rotational spectroscopy uses noncovalent derivatization of the enantioisotopomer to create the diastereomers of the 1:1 molecular complexes of the analyte and a small, chiral molecule. Assignment of the absolute configuration requires high-confidence determinations of the structures of these weakly bound complexes. A general search method, CREST, is used to identify candidate geometries. Subsequent geometry optimization using dispersion corrected density functional theory gives equilibrium geometries with sufficient accuracy to identify the isomers of the chiral tag complexes produced in the pulsed jet expansion used to introduce the sample into the MRR spectrometer. Rotational constant scaling based on the fact that the diastereomers have the same equilibrium geometry gives accurate predictions allowing identification of the homochiral and heterochiral tag complexes and, therefore, assignment of absolute configuration. The method is successfully applied to three oxygenated substrates from enantioselective Cu-catalyzed alkene transfer hydrodeuteration reaction chemistry.

4.
J Labelled Comp Radiopharm ; 66(3): 86-94, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36772856

RESUMO

Selective deuterium installation into small molecules is becoming increasingly desirable not only for the elucidation of mechanistic pathways and studying biological processes but also because of deuterium's ability to favorably adjust the pharmacokinetic parameters of bioactive molecules. Fused bicyclic moieties, especially those containing heteroatoms, are prevalent in drug discovery and pharmaceuticals. Herein, we report a copper-catalyzed transfer hydrodeuteration of cyclic and heterocyclic alkenes, which enables the synthesis of chromans, quinolinones, and tetrahydronaphthalenes that are precisely deuterated at the benzylic position. We also demonstrate the ability to place one deuterium atom at the homobenzylic site of these scaffolds with high regioselectivity by swapping transfer reagents for their isotopic analogs. Furthermore, examples of chemoselective transfer hydrogenation and transfer deuteration are disclosed, allowing for the simultaneous incorporation of two vicinal hydrogen or deuterium atoms into a double bond.


Assuntos
Cicloparafinas , Deutério/química , Hidrogênio/química , Cobre , Catálise , Alcenos/química
5.
Angew Chem Int Ed Engl ; 61(33): e202207275, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35700045

RESUMO

Fundamental to the synthesis of enantioenriched chiral molecules is the ability to assign absolute configuration at each stereogenic center, and to determine the enantiomeric excess for each compound. While determination of enantiomeric excess and absolute configuration is often considered routine in many facets of asymmetric synthesis, the same determinations for enantioisotopomers remains a formidable challenge. Here, we report the first highly enantioselective metal-catalyzed synthesis of enantioisotopomers that are chiral by virtue of deuterium substitution along with the first general spectroscopic technique for assignment of the absolute configuration and quantitative determination of the enantiomeric excess of isotopically chiral molecules. Chiral tag rotational spectroscopy uses noncovalent chiral derivatization, which eliminates the possibility of racemization during derivatization, to perform the chiral analysis without the need of reference samples of the enantioisotopomer.


Assuntos
Estereoisomerismo , Análise Espectral
6.
Chemistry ; 28(9): e202104340, 2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-34882859

RESUMO

Catalytic transfer hydrodeuteration of unactivated alkenes is challenging because of the requirement that chemically similar hydrogen and deuterium undergo selective insertion across a π-bond. We now report a highly regioselective catalytic transfer hydrodeuteration of unactivated terminal alkenes across a variety of heteroatom- or heterocycle-containing substrates. The base-metal-catalyzed reaction is also demonstrated on two complex natural products. Reaction studies indicate modular conditions that can also be extended to perform either an alkene transfer hydrogenation or transfer deuteration.


Assuntos
Alcenos , Cobre , Alcenos/química , Catálise , Cobre/química , Hidrogenação , Estrutura Molecular
7.
Chemistry ; 27(39): 9988-10000, 2021 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-33979460

RESUMO

Increasing demand for deuterium-labeled organic molecules has spurred a renewed interest in selective methods for deuterium installation. Catalytic transfer deuteration and transfer hydrodeuteration are emerging as powerful techniques for the selective incorporation of deuterium into small molecules. These reactions not only obviate the use of D2 gas and pressurized reaction setups but provide new opportunities for selectively installing deuterium into small molecules. Commercial or readily synthesized deuterium donors are typically employed as easy-to-handle reagents for transfer deuteration and hydrodeuteration reactions. In this minireview, recent advances in the catalytic transfer deuteration and hydrodeuteration of alkenes and alkynes for the selective synthesis of deuterated alkanes will be discussed.


Assuntos
Alcenos , Alcinos , Alcanos , Catálise , Deutério
8.
J Am Chem Soc ; 143(20): 7707-7718, 2021 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-34000182

RESUMO

A copper-catalyzed alkene transfer hydrodeuteration reaction that selectively incorporates one hydrogen and one deuterium atom across an aryl alkene is described. The transfer hydrodeuteration protocol is selective across a variety of internal and terminal alkenes and is also demonstrated on an alkene-containing complex natural product analog. Beyond using 1H, 2H, and 13C NMR analysis to measure reaction selectivity, six transfer hydrodeuteration products were analyzed by molecular rotational resonance (MRR) spectroscopy. The application of MRR spectroscopy to the analysis of isotopic impurities in deuteration chemistry is further explored through a measurement methodology that is compatible with high-throughput sample analysis. In the first step, the MRR spectroscopy signatures of all isotopic variants accessible in the reaction chemistry are analyzed using a broadband chirped-pulse Fourier transform microwave spectrometer. With the signatures in hand, measurement scripts are created to quantitatively analyze the sample composition using a commercial cavity enhanced MRR spectrometer. The sample consumption is below 10 mg with analysis times on the order of 10 min using this instrument-both representing order-of-magnitude reduction compared to broadband MRR spectroscopy. To date, these measurements represent the most precise spectroscopic determination of selectivity in a transfer hydrodeuteration reaction and confirm that product regioselectivity ratios of >140:1 are achievable under this mild protocol.

9.
Org Lett ; 22(22): 9139-9144, 2020 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-33170728

RESUMO

A copper-catalyzed reduction of alkynes to alkanes and deuterated alkanes is described under transfer hydrogenation and transfer deuteration conditions. Commercially available alcohols and silanes are used interchangeably with their deuterated analogues as the hydrogen or deuterium sources. Transfer deuteration of terminal and internal aryl alkynes occurs with high levels of deuterium incorporation. Alkyne-containing complex natural product analogues undergo transfer hydrogenation and transfer deuteration selectively, in high yield. Mechanistic experiments support the reaction occurring through a cis-alkene intermediate and demonstrate the possibility for a regioselective alkyne transfer hydrodeuteration reaction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...