Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Cell Environ ; 46(11): 3194-3205, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37554043

RESUMO

Plants are constantly exposed to a multitude of external signals, including light. The information contained within the full spectrum of light is perceived by a battery of photoreceptors, each with specific and shared signalling outputs. Recently, it has become clear that UV-B radiation is a vital component of the electromagnetic spectrum, guiding growth and being crucial for plant fitness. However, given the large overlap between UV-B specific signalling pathways and other photoreceptors, understanding how plants can distinguish UV-B specific signals from other light components deserves more scrutiny. With recent evidence, we propose that UV-B signalling and other light signalling pathways occur within distinct tissues and cell-types and that the contribution of each pathway depends on the type of response and the developmental stage of the plant. Elucidating the precise site(s) of action of each molecular player within these signalling pathways is key to fully understand how plants are able to orchestrate coordinated responses to light within the whole plant body. Focusing our efforts on the molecular study of light signal interactions to understand plant growth in natural environments in a cell-type specific manner will be a next step in the field of photobiology.


Assuntos
Plantas , Transdução de Sinais , Transdução de Sinais/fisiologia , Plantas/metabolismo , Transdução de Sinal Luminoso , Raios Ultravioleta
2.
Plant Physiol Biochem ; 194: 696-707, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36565614

RESUMO

Tartary buckwheat is rich in flavonoids, which not only play an important role in the plant-environment interaction, but are also beneficial to human health. Rutin is a therapeutic flavonol which is massively accumulated in Tartary buckwheat. It has been demonstrated that transcription factors control rutin biosynthesis. However, the transcriptional regulatory network of rutin is not fully clear. In this study, through transcriptome and target metabolomics, we validated the role of FtMYB102 and FtbHLH4 TFs at the different developmental stages of Tartary buckwheat. The elevated accumulation of rutin in the sprout appears to be closely associated with the expression of FtMYB102 and FtbHLH4. Yeast two-hybrid, transient luciferase activity and co-immunoprecipitation demonstrated that FtMYB102 and FtbHLH4 can interact and form a transcriptional complex. Moreover, yeast one-hybrid showed that both FtMYB102 and FtbHLH4 directly bind to the promoter of chalcone isomerase (CHI), and they can coordinately induce CHI expression as shown by transient luciferase activity assay. Finally, we transferred FtMYB102 and FtbHLH4 into the hairy roots of Tartary buckwheat and found that they both can promote the accumulation of rutin. Our results indicate that FtMYB102 and FtbHLH4 can form a transcriptional complex by inducing CHI expression to coordinately promote the accumulation of rutin.


Assuntos
Fagopyrum , Rutina , Fagopyrum/genética , Fagopyrum/metabolismo , Flavonoides/metabolismo , Luciferases/metabolismo , Rutina/metabolismo , Técnicas do Sistema de Duplo-Híbrido
3.
Plants (Basel) ; 11(14)2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35890464

RESUMO

Tomato (Solanum lycopersicum L.) is globally recognised as a high-value crop both for commercial profit and nutritional benefits. In contrast to the extensive data regarding the changes in the metabolism of tomato fruit exposed to UV radiation, less is known about the foliar and root metabolome. Using an untargeted metabolomic approach through UHPLC-ESI-QTOF-MS analysis, we detected thousands of metabolites in the leaves (3000) and roots (2800) of Micro-Tom tomato plants exposed to 11 days of short daily UV radiation, applied only on the aboveground organs. Multivariate statistical analysis, such as OPLS-DA and volcano, were performed to allow a better understanding of the modifications caused by the treatment. Based on the unexpected modulation to the secondary metabolism, especially the phenylpropanoid pathway, of which compounds were down and up accumulated respectively in leaves and roots of treated plants, a phenolic profiling was carried out for both organs. The phenolic profile was associated with a gene expression analysis to check the transcription trend of genes involved in the UVR8 signalling pathway and the early steps of the phenolic biosynthesis. The retention of the modifications at metabolic and phenolic levels was also investigated 3 days after the UV treatment, showing a prolonged effect on the modulation once the UV treatment had ceased.

4.
Plant Cell Environ ; 44(10): 3246-3256, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34181245

RESUMO

Inflorescence movements in response to natural gradients of sunlight are frequently observed in the plant kingdom and are suggested to contribute to reproductive success. Although the physiological and molecular bases of light-mediated tropisms in vegetative organs have been thoroughly investigated, the mechanisms that control inflorescence orientation in response to light gradients under natural conditions are not well understood. In this work, we have used a combination of laboratory and field experiments to investigate light-mediated re-orientation of Arabidopsis thaliana inflorescences. We show that inflorescence phototropism is promoted by photons in the UV and blue spectral range (≤500 nm) and depends on multiple photoreceptor families. Experiments under controlled conditions show that UVR8 is the main photoreceptor mediating the phototropic response to narrowband UV-B radiation, and phototropins and cryptochromes control the response to narrowband blue light. Interestingly, whereas phototropins mediate bending in response to low irradiances of blue, cryptochromes are the principal photoreceptors acting at high irradiances. Moreover, phototropins negatively regulate the action of cryptochromes at high irradiances of blue light. Experiments under natural field conditions demonstrate that cryptochromes are the principal photoreceptors acting in the promotion of the heliotropic response of inflorescences under full sunlight.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/fisiologia , Proteínas Cromossômicas não Histona/genética , Citocromos/genética , Fotorreceptores de Plantas/genética , Fototropismo/genética , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Citocromos/metabolismo , Fotorreceptores de Plantas/metabolismo
5.
Front Plant Sci ; 11: 597642, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33384704

RESUMO

Ultraviolet (UV) radiation directly affects plants and microorganisms, but also alters the species-specific interactions between them. The distinct bands of UV radiation, UV-A, UV-B, and UV-C have different effects on plants and their associated microorganisms. While UV-A and UV-B mainly affect morphogenesis and phototropism, UV-B and UV-C strongly trigger secondary metabolite production. Short wave (<350 nm) UV radiation negatively affects plant pathogens in direct and indirect ways. Direct effects can be ascribed to DNA damage, protein polymerization, enzyme inactivation and increased cell membrane permeability. UV-C is the most energetic radiation and is thus more effective at lower doses to kill microorganisms, but by consequence also often causes plant damage. Indirect effects can be ascribed to UV-B specific pathways such as the UVR8-dependent upregulated defense responses in plants, UV-B and UV-C upregulated ROS accumulation, and secondary metabolite production such as phenolic compounds. In this review, we summarize the physiological and molecular effects of UV radiation on plants, microorganisms and their interactions. Considerations for the use of UV radiation to control microorganisms, pathogenic as well as non-pathogenic, are listed. Effects can be indirect by increasing specialized metabolites with plant pre-treatment, or by directly affecting microorganisms.

6.
Plant Cell ; 31(9): 2070-2088, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31289115

RESUMO

In the course of evolution, plants have developed mechanisms that orient their organs toward the incoming light. At the seedling stage, positive phototropism is mainly regulated by phototropin photoreceptors in blue and UV wavelengths. Contrasting with this, we report that UV RESISTANCE LOCUS8 (UVR8) serves as the predominant photoreceptor of UV-B-induced phototropic responses in Arabidopsis (Arabidopsis thaliana) inflorescence stems. We examined the molecular mechanisms underlying this response and our findings support the Blaauw theory (Blaauw, 1919), suggesting rapid differential growth through unilateral photomorphogenic growth inhibition. UVR8-dependent UV-B light perception occurs mainly in the epidermis and cortex, but deeper tissues such as endodermis can also contribute. Within stems, a spatial difference of UVR8 signal causes a transcript and protein increase of transcription factors ELONGATED HYPOCOTYL5 (HY5) and its homolog HY5 HOMOLOG at the UV-B-exposed side. The irradiated side shows (1) strong activation of flavonoid synthesis genes and flavonoid accumulation; (2) increased gibberellin (GA)2-oxidase expression, diminished GA1 levels, and accumulation of the DELLA protein REPRESSOR OF GA1; and (3) increased expression of the auxin transport regulator PINOID, contributing to diminished auxin signaling. Together, the data suggest a mechanism of phototropin-independent inflorescence phototropism through multiple, locally UVR8-regulated hormone pathways.


Assuntos
Proteínas de Arabidopsis/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Inflorescência/metabolismo , Inflorescência/efeitos da radiação , Fototropismo/fisiologia , Fototropismo/efeitos da radiação , Caules de Planta/metabolismo , Caules de Planta/efeitos da radiação , Raios Ultravioleta , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Proteínas Cromossômicas não Histona/genética , Flavonoides/genética , Flavonoides/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Ácidos Indolacéticos , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais
7.
Photochem Photobiol Sci ; 18(5): 1030-1045, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-30838366

RESUMO

The UV Resistance Locus 8 (UVR8) photoreceptor controls UV-B mediated photomorphogenesis in Arabidopsis. The aim of this work is to collect and characterize different molecular reporters of photomorphogenic UV-B responses. Browsing available transcriptome databases, we identified sets of genes responding specifically to this radiation and are controlled by pathways initiated from the UVR8 photoreceptor. We tested the transcriptional changes of several reporters and found that they are regulated differently in different parts of the plant. Our experimental system led us to conclude that the examined genes are not controlled by light piping of UV-B from the shoot to the root or signalling molecules which may travel between different parts of the plant body but by local UVR8 signalling. The initiation of these universal signalling steps can be the induction of Elongated Hypocotyl 5 (HY5) and its homologue, HYH transcription factors. We found that their transcript and protein accumulation strictly depends on UVR8 and happens in a tissue autonomous manner. Whereas HY5 accumulation correlates well with the UVR8 signal across cell layers, the induction of flavonoids depends on both UVR8 signal and a yet to be identified tissue-dependent or developmental determinant.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/química , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Fatores de Transcrição de Zíper de Leucina Básica/química , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/genética , Clonagem Molecular , Microscopia Confocal , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Transdução de Sinais , Raios Ultravioleta
8.
Methods Mol Biol ; 1924: 131-139, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30694471

RESUMO

UV-B phototropism in etiolated Arabidopsis seedlings has only been shown recently and needs further exploration. Here we elaborate on how to generate a customized setup with a unilateral UV-B light source, the required plant materials, different growth substrates, and a framework for data analysis.


Assuntos
Fototropismo/efeitos da radiação , Raios Ultravioleta , Arabidopsis/fisiologia , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Plântula/fisiologia , Plântula/efeitos da radiação
9.
Plant Sci ; 268: 54-63, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29362084

RESUMO

Ultraviolet B light (UV-B, 280-315 nm) is the shortest wavelength of the solar spectrum reaching the surface of the Earth. It has profound effects on plants, ranging from growth regulation to severe metabolic changes. Low level UV-B mainly causes photomorphogenic effects while higher levels can induce stress, yet these effects tend to overlap. Here we identified a condition that allows growth reduction without obvious detrimental stress in wild type Arabidopsis rosette plants. This condition was used to study the effects of a daily UV-B dose on plant characteristics of UV-B adapted plants in detail. Exploration of the transcriptome of developing leaves indicated downregulation of genes involved in stomata formation by UV-B, while at the same time genes involved in photoprotective pigment biosynthesis were upregulated. These findings correspond with a decreased stomatal density and increased UV-B absorbing pigments. Gene ontology analysis revealed upregulation of defense related genes and meta-analysis showed substantial overlap of the UV-B regulated transcriptome with transcriptomes of salicylate and jasmonate treated as well as herbivore exposed plants. Feeding experiments showed that caterpillars of Spodoptera littoralis are directly affected by UV-B, while performance of the aphid Myzus persicae is diminished by a plant mediated process.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Arabidopsis/imunologia , Raios Ultravioleta , Animais , Afídeos/fisiologia , Arabidopsis/efeitos da radiação , Biomarcadores/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Herbivoria/efeitos da radiação , Folhas de Planta/genética , Folhas de Planta/efeitos da radiação , Estômatos de Plantas/genética , Estômatos de Plantas/fisiologia , Estômatos de Plantas/efeitos da radiação , Estresse Fisiológico/genética , Estresse Fisiológico/efeitos da radiação , Transcriptoma/genética
10.
Plant Sci ; 252: 215-221, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27717456

RESUMO

Ultraviolet B (UV-B) light is a part of the solar radiation which has significant effects on plant morphology, even at low doses. In Arabidopsis, many of these morphological changes have been attributed to a specific UV-B receptor, UV resistance locus 8 (UVR8). Recent findings showed that next to phototropin regulated phototropism, UVR8 mediated signaling is able of inducing directional bending towards UV-B light in etiolated seedlings of Arabidopsis, in a phototropin independent manner. In this study, kinetic analysis of phototropic bending was used to evaluate the relative contribution of each of these pathways in UV-B mediated phototropism. Diminishing UV-B light intensity favors the importance of phototropins. Molecular and genetic analyses suggest that UV-B is capable of inducing phototropin signaling relying on phototropin kinase activity and regulation of NPH3. Moreover, enhanced UVR8 responses in the UV-B hypersensitive rup1rup2 mutants interferes with the fast phototropin mediated phototropism. Together the data suggest that phototropins are the most important receptors for UV-B induced phototropism in etiolated seedlings, and a RUP mediated negative feedback pathway prevents UVR8 signaling to interfere with the phototropin dependent response.


Assuntos
Arabidopsis/efeitos da radiação , Fototropinas/fisiologia , Fototropismo , Raios Ultravioleta , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiologia , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Proteínas Cromossômicas não Histona/fisiologia , Cinética , Transdução de Sinal Luminoso , Fototropinas/genética , Fototropinas/metabolismo , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Plântula/efeitos da radiação
11.
J Exp Bot ; 67(15): 4469-82, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27401912

RESUMO

Ultraviolet B (UV-B) light is a portion of solar radiation that has significant effects on the development and metabolism of plants. Effects of UV-B on plants can be classified into photomorphogenic effects and stress effects. These effects largely rely on the control of, and interactions with, hormonal pathways. The fairly recent discovery of the UV-B-specific photoreceptor UV RESISTANCE LOCUS 8 (UVR8) allowed evaluation of the role of downstream hormones, leading to the identification of connections with auxin and gibberellin. Moreover, a substantial overlap between UVR8 and phytochrome responses has been shown, suggesting that part of the responses caused by UVR8 are under PHYTOCHROME INTERACTING FACTOR control. UV-B effects can also be independent of UVR8, and affect different hormonal pathways. UV-B affects hormonal pathways in various ways: photochemically, affecting biosynthesis, transport, and/or signaling. This review concludes that the effects of UV-B on hormonal regulation can be roughly divided in two: inhibition of growth-promoting hormones; and the enhancement of environmental stress-induced defense hormones.


Assuntos
Reguladores de Crescimento de Plantas/fisiologia , Plantas/efeitos da radiação , Proteínas de Arabidopsis/fisiologia , Proteínas Cromossômicas não Histona/fisiologia , Giberelinas/fisiologia , Ácidos Indolacéticos/metabolismo , Fenômenos Fisiológicos Vegetais/efeitos da radiação , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...