Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Syst Appl Microbiol ; 32(3): 211-25, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19157742

RESUMO

Bacterial midrib rot of greenhouse-grown butterhead lettuce (Lactuca sativa L. var. capitata) is an emerging disease in Flanders (Belgium) and fluorescent pseudomonads are suspected to play an important role in the disease. Isolations from infected lettuces, collected from 14 commercial greenhouses in Flanders, yielded 149 isolates that were characterized polyphasically, which included morphological characteristics, pigmentation, pathogenicity tests by both injection and spraying of lettuce, LOPAT characteristics, FAME analysis, BOX-PCR fingerprinting, 16S rRNA and rpoB gene sequencing, as well as DNA-DNA hybridization. Ninety-eight isolates (66%) exhibited a fluorescent pigmentation and were associated with the genus Pseudomonas. Fifty-five of them induced an HR+ (hypersensitive reaction in tobacco leaves) response. The other 43 fluorescent isolates were most probably saprophytic bacteria and about half of them were able to cause rot on potato tuber slices. BOX-PCR genomic fingerprinting was used to assess the genetic diversity of the Pseudomonas midrib rot isolates. The delineated BOX-PCR patterns matched quite well with Pseudomonas morphotypes defined on the basis of colony appearance and variation in fluorescent pigmentation. 16S rRNA and rpoB gene sequence analyses allowed most of the fluorescent isolates to be allocated to Pseudomonas, and they belonged to either the Pseudomonas fluorescens group, Pseudomonas putida group, or the Pseudomonas cichorii/syringae group. In particular, the isolates allocated to this latter group constituted the vast majority of HR+ isolates and were identified as P. cichorii by DNA-DNA hybridization. They were demonstrated by spray-inoculation tests on greenhouse-grown lettuce to induce the midrib rot disease and could be re-isolated from lesions of inoculated plants. Four HR+ non-fluorescent isolates associated with one sample that showed an atypical midrib rot were identified as Dickeya sp.


Assuntos
Lactuca/microbiologia , Doenças das Plantas/microbiologia , Pseudomonas/classificação , Pseudomonas/isolamento & purificação , Técnicas de Tipagem Bacteriana , Bélgica , DNA Bacteriano/isolamento & purificação , DNA Ribossômico/análise , RNA Polimerases Dirigidas por DNA/genética , Ácidos Graxos/análise , Dados de Sequência Molecular , Hibridização de Ácido Nucleico , Reação em Cadeia da Polimerase/métodos , Polissacarídeo-Liases/metabolismo , Pseudomonas/genética , Pseudomonas/fisiologia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
2.
Mol Plant Pathol ; 8(3): 267-78, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-20507498

RESUMO

SUMMARY To analyse the parasitic behaviour of the plant-parasitic nematode Heterodera schachtii, proteins secreted by this nematode were purified and separated by two-dimensional gel electrophoresis. Mass spectrometric analysis identified one of the spots as a pectate lyase (EC 4.2.2.2). The corresponding gene was cloned from a cDNA library using primers derived from the peptide tag. A second pectate lyase was cloned based on similarity to known pectate lyases of related cyst nematodes. The predicted proteins are only 29% identical. Despite the low homology, the proteins have a similar secondary structure and it is likely that they fold into a similar right-handed beta-helix. Both proteins have a putative signal peptide for secretion, and in situ hybridization revealed that expression of the genes was limited to the subventral secretory glands. RT-PCR showed that both genes were expressed in the migratory preparasitic stage although the level of expression between the two genes was different. Post-transcriptional gene silencing by soaking the nematodes in double-stranded RNA against the gene with the highest expression level affected the infection process of the nematode, which is in agreement with the general idea that pectate lyases are essential during migration of the nematode in the plant root.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...