Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 283
Filtrar
2.
Pflugers Arch ; 476(3): 307-321, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38279994

RESUMO

Aldosterone through the mineralocorticoid receptor MR has detrimental effects on cardiovascular disease. It reduces the bioavailability of nitric oxide and impairs endothelium-dependent vasodilatation. In resistance arteries, aldosterone impairs the sensitivity of vascular smooth muscle cells to nitric oxide by promoting the local secretion of histamine which activates H2 receptors. The present experiments tested in vivo and ex vivo the hypothesis that systemic H2-receptor antagonism reduces arterial blood pressure and improves vasodilatation in angiotensin II-induced chronic hypertension. Hypertension was induced by intravenous infusion of angiotensin II (60 ng kg-1 min-1) in conscious, unrestrained mice infused concomitantly with the H2-receptor antagonist ranitidine (27.8 µg kg-1 min-1) or vehicle for 24 days. Heart rate and arterial blood pressure were recorded by indwelling arterial catheter. Resistance (mesenteric) and conductance (aortae) arteries were harvested for perfusion myography and isometric tension recordings by wire myography, respectively. Plasma was analyzed for aldosterone concentration. ANGII infusion resulted in elevated arterial blood pressure and while in vivo treatment with ranitidine reduced plasma aldosterone concentration, it did not reduce blood pressure. Ranitidine improved ex vivo endothelial function (acetylcholine 10-9 to 10-6 mol L-1) in mesenteric resistance arteries. This was abolished by ex vivo treatment with aldosterone (10-9 mol L-1, 1 h). In aortic segments, in vivo ranitidine treatment impaired relaxation. Activation of histamine H2 receptors promotes aldosterone secretion, does not affect arterial blood pressure, and protects endothelial function in conduit arteries but promotes endothelial dysfunction in resistance arteries during angiotensin II-mediated hypertension. Aldosterone contributes little to angiotensin II-induced hypertension in mice.


Assuntos
Aldosterona , Hipertensão , Camundongos , Animais , Angiotensina II/farmacologia , Pressão Arterial , Histamina/farmacologia , Antagonistas dos Receptores H2 da Histamina/efeitos adversos , Ranitidina/efeitos adversos , Óxido Nítrico , Pressão Sanguínea , Endotélio Vascular , Artérias Mesentéricas
3.
Cardiovasc Res ; 118(1): 254-266, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33483748

RESUMO

AIMS: Rheumatoid arthritis (RA) is a chronic inflammatory disease affecting joints and blood vessels. Despite low levels of low-density lipoprotein cholesterol (LDL-C), RA patients exhibit endothelial dysfunction and are at increased risk of death from cardiovascular complications, but the molecular mechanism of action is unknown. We aimed in the present study to identify the molecular mechanism of endothelial dysfunction in a mouse model of RA and in patients with RA. METHODS AND RESULTS: Endothelium-dependent relaxations to acetylcholine were reduced in aortae of two tumour necrosis factor alpha (TNFα) transgenic mouse lines with either mild (Tg3647) or severe (Tg197) forms of RA in a time- and severity-dependent fashion as assessed by organ chamber myograph. In Tg197, TNFα plasma levels were associated with severe endothelial dysfunction. LOX-1 receptor was markedly up-regulated leading to increased vascular oxLDL uptake and NFκB-mediated enhanced Arg2 expression via direct binding to its promoter resulting in reduced NO bioavailability and vascular cGMP levels as shown by ELISA and chromatin immunoprecipitation. Anti-TNFα treatment with infliximab normalized endothelial function together with LOX-1 and Arg2 serum levels in mice. In RA patients, soluble LOX-1 serum levels were also markedly increased and closely related to serum levels of C-reactive protein. Similarly, ARG2 serum levels were increased. Similarly, anti-TNFα treatment restored LOX-1 and ARG2 serum levels in RA patients. CONCLUSIONS: Increased TNFα levels not only contribute to RA, but also to endothelial dysfunction by increasing vascular oxLDL content and activation of the LOX-1/NFκB/Arg2 pathway leading to reduced NO bioavailability and decreased cGMP levels. Anti-TNFα treatment improved both articular symptoms and endothelial function by reducing LOX-1, vascular oxLDL, and Arg2 levels.


Assuntos
Aorta Torácica/efeitos dos fármacos , Arginase/metabolismo , Artrite Reumatoide/tratamento farmacológico , Células Endoteliais/efeitos dos fármacos , Endotélio Vascular/efeitos dos fármacos , Receptores Depuradores Classe E/metabolismo , Inibidores do Fator de Necrose Tumoral/uso terapêutico , Fator de Necrose Tumoral alfa/metabolismo , Vasodilatação/efeitos dos fármacos , Adulto , Animais , Animais Geneticamente Modificados , Aorta Torácica/enzimologia , Aorta Torácica/imunologia , Aorta Torácica/fisiopatologia , Arginase/genética , Artrite Reumatoide/enzimologia , Artrite Reumatoide/imunologia , Artrite Reumatoide/fisiopatologia , Estudos de Casos e Controles , Modelos Animais de Doenças , Células Endoteliais/enzimologia , Células Endoteliais/imunologia , Endotélio Vascular/enzimologia , Endotélio Vascular/imunologia , Endotélio Vascular/fisiopatologia , Feminino , Humanos , Lipoproteínas LDL/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Pessoa de Meia-Idade , NF-kappa B/metabolismo , Receptores Depuradores Classe E/genética , Transdução de Sinais , Fator de Necrose Tumoral alfa/genética
4.
Acta Physiol (Oxf) ; 231(3): e13565, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33010104

RESUMO

AIM: Natriuretic peptides, BNP and ANP increase renal blood flow in experimental animals. The signalling pathway in human kidney vasculature is unknown. It was hypothesized that BNP and ANP cause endothelium-independent relaxation of human intrarenal arteries by vascular natriuretic peptide receptor-A, but not -B and -C, which is mimicked by agonists of soluble guanylyl cyclase sGC. METHODS: Human (n = 54, diameter: 665 ± 29 µm 95% CI) and control murine intrarenal arteries (n = 83, diameter 300 ± 6 µm 95% CI) were dissected and used for force recording by four-channel wire myography. Arterial segments were pre-contracted, then subjected to increasing concentrations of BNP, ANP, phosphodiesterase 5-inhibitor sildenafil, sGC-activator BAY 60-2770 and -stimulator BAY 41-2272. Endothelial nitric oxide synthase (eNOS) dependence was examined by use of L-NAME and eNOS knockout respectively. Molecular targets (NPR A-C, sGC, phosphodiesterase-5 and neprilysin) were mapped by PCR, immunohistochemistry and RNAscope. RESULTS: BNP, ANP, sildenafil, sGC-activation and -stimulation caused concentration-dependent relaxation of human and murine intrarenal arteries. BNP responses were independent of eNOS and were not potentiated by low concentration of phosphodiesterase-5-inhibitor, sGC-stimulator or NPR-C blocker. PCR showed NPR-A and C, phosphodiesterase-5, neprilysin and sGC mRNA in renal arteries. NPR-A mRNA and protein was observed in vascular smooth muscle and endothelial cells in arteries, podocytes, Bowmans capsule and vasa recta. NPR-C was observed in tubules, glomeruli and vasculature. CONCLUSION: Activation of transmembrane NPR-A and soluble guanylyl cyclase relax human preglomerular arteries similarly to phosphodiestase-5 inhibition. The human renal arterial bed relaxes in response to cGMP pathway.


Assuntos
Células Endoteliais , Guanilato Ciclase , Animais , Artérias , GMP Cíclico , Humanos , Camundongos , Peptídeos Natriuréticos/farmacologia , Guanilil Ciclase Solúvel
5.
Br J Pharmacol ; 177(22): 5131-5147, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32830316

RESUMO

BACKGROUND AND PURPOSE: This study aims to explore the mechanism underlying the up-regulation of major histocompatibility complex (MHC) proteins in glomerular endothelial cells in 5/6 nephrectomy mice. EXPERIMENTAL APPROACH: C57/BL6 mice were randomly allocated to sham-operated (2K) and 5/6 nephrectomy (5/6Nx) groups. Mouse splenic lymphocytes, from either syngeneic or allogeneic background, were injected into 5/6Nx mice after total body irradiation. Human glomerular endothelial cells (HGECs) were cultured for experiments in vitro. Western blots, PCR, immunohistochemical and fluorescent staining were used, along with assays of tissue cytokines, lymphocyte migration and renal function. KEY RESULTS: Four weeks after nephrectomy, expression of both mRNA and protein of MHC II, CD80, and CD86 were increased in 5/6Nx glomerular endothelial cells. After total body irradiation, 5/6Nx mice injected with lymphocytes from Balb/c mice, but not those from C57/BL6 mice, exhibited increased creatinine levels, indicating that allograft lymphocyte transfer impaired renal function. In HGECs, the protein levels of MHC and MHC Class II transactivator (CIITA) were increased by stimulation with TNF-α or IFN-γ, which promoted human lymphocytes movement. These increases were reduced by JNK inhibitors. In the 5/6Nx mice, JNK inhibition down-regulated MHC II protein in glomerular endothelial cells, suggesting that JNK signalling participates in the regulation of MHC II protein. CONCLUSION AND IMPLICATIONS: Chronic inflammation in mice subjected to nephrectomy induces the up-regulation of MHC molecules in glomerular endothelial cells. This up-regulation is reduced by inhibition of JNK signalling.


Assuntos
Proteínas Quinases JNK Ativadas por Mitógeno , Proteínas Nucleares , Animais , Células Endoteliais , Histocompatibilidade , Interferon gama , Complexo Principal de Histocompatibilidade , Camundongos , Camundongos Endogâmicos BALB C , Nefrectomia
6.
Atherosclerosis ; 304: 30-38, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32574829

RESUMO

BACKGROUND AND AIMS: Peripheral arterial disease (PAD) is an important cause of morbidity and mortality with little effective medical treatment currently available. Nitric oxide (NO) is crucially involved in organ perfusion, tissue protection and angiogenesis. METHODS: We hypothesized that a novel NO-donor, MPC-1011, might elicit vasodilation, angiogenesis and arteriogenesis and in turn improve limb perfusion, in a hindlimb ischemia model. Hindlimb ischemia was induced by femoral artery ligation in Sprague-Dawley rats, which were randomized to receive either placebo, MPC-1011, cilostazol or both, up to 28 days. Limb blood flow was assessed by laser Doppler imaging. RESULTS: After femoral artery occlusion, limb perfusion in rats receiving MPC-1011 alone or in combination with cilostazol was increased throughout the treatment regimen. Capillary density and the number of arterioles was increased only with MPC-1011. MPC-1011 improved vascular remodeling by increasing luminal diameter in the ischemic limb. Moreover, MPC-1011 stimulated the release of proangiogenic cytokines, including VEGF, SDF1α and increased tissue cGMP levels, reduced platelet activation and aggregation, potentiated proliferation and migration of endothelial cells which was blunted in the presence of soluble guanylyl cyclase inhibitor LY83583. In MPC-1011-treated rats, Lin-/CD31+/CXCR4+ cells were increased by 92.0% and Lin-/VEGFR2+/CXCR4+ cells by 76.8% as compared to placebo. CONCLUSIONS: Here we show that the NO donor, MPC-1011, is a specific promoter of angiogenesis and arteriogenesis in a hindlimb ischemia model in an NO-cGMP-VEGF- dependent manner. This sets the basis to evaluate and confirm the efficacy of such therapy in a clinical setting in patients with PAD and impaired limb perfusion.


Assuntos
Quimiocina CXCL12 , Isquemia/tratamento farmacológico , Neovascularização Fisiológica/efeitos dos fármacos , Doadores de Óxido Nítrico/farmacologia , Fator A de Crescimento do Endotélio Vascular , Animais , Modelos Animais de Doenças , Células Endoteliais , Membro Posterior , Músculo Esquelético , Ratos , Ratos Sprague-Dawley , Fluxo Sanguíneo Regional , Fator A de Crescimento do Endotélio Vascular/farmacologia
7.
Eur Heart J ; 41(33): 3169-3180, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32350521

RESUMO

AIMS: Adipocyte fatty acid-binding protein (A-FABP) is an adipokine implicating in various metabolic diseases. Elevated circulating levels of A-FABP correlate positively with poor prognosis in ischaemic stroke (IS) patients. No information is available concerning the role of A-FABP in the pathogenesis of IS. Experiments were designed to determine whether or not A-FABP mediates blood-brain barrier (BBB) disruption, and if so, to explore the molecular mechanisms underlying this deleterious effects. METHODS AND RESULTS: Circulating A-FABP and its cerebral expression were increased in mice after middle cerebral artery occlusion. Genetic deletion and pharmacological inhibition of A-FABP alleviated cerebral ischaemia injury with reduced infarction volume, cerebral oedema, neurological deficits, and neuronal apoptosis; BBB disruption was attenuated and accompanied by reduced degradation of tight junction proteins and induction of matrix metalloproteinases-9 (MMP-9). In patients with acute IS, elevated circulating A-FABP levels positively correlated with those of MMP-9 and cerebral infarct volume. Mechanistically, ischaemia-induced elevation of A-FABP selectively in peripheral blood monocyte-derived macrophages and cerebral resident microglia promoted MMP-9 transactivation by potentiating JNK/c-Jun signalling, enhancing degradation of tight junction proteins and BBB leakage. The detrimental effects of A-FABP were prevented by pharmacological inhibition of MMP-9. CONCLUSION: A-FABP is a key mediator of cerebral ischaemia injury promoting MMP-9-mediated BBB disruption. Inhibition of A-FABP is a potential strategy to improve IS outcome.


Assuntos
Isquemia Encefálica , Acidente Vascular Cerebral , Adipócitos , Animais , Barreira Hematoencefálica , Proteínas de Ligação a Ácido Graxo , Humanos , Infarto da Artéria Cerebral Média , Camundongos
8.
J Physiol Biochem ; 76(1): 135-145, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32016773

RESUMO

The deletion of T-type Cav3.1 channels may reduce high-fat diet (HFD)-induced weight gain, which correlates positively with obesity and endothelial dysfunction. Therefore, experiments were designed to study the involvement of T-type Cav3.1 channels in HFD-induced endothelial dysfunction in mice. Wildtype (WT) and Cav3.1-/- mice were fed either a normal diet (ND) or an HFD for 8 weeks. Body composition was assessed, and thoracic aortae and mesenteric arteries were harvested for myography to assess endothelium-dependent responses. Changes in intracellular calcium were measured by fluorescence imaging, and behavior was assessed with the open-field test. Cav3.1-/- mice had attenuated HFD-induced weight gain and lower total fat mass compared with WT mice. Cav3.1-/- mice on an HFD had reduced plasma cholesterol levels compared with WT mice on the same diet. Increased feeding efficiency, independent of food intake, was observed in WT mice on an HFD compared with an ND, but no difference in feeding efficiency between diets was observed for Cav3.1-/- mice. Nitric oxide-dependent dilatation was increased in mesenteric arteries of Cav3.1-/- mice compared with WT mice on an HFD, with no difference observed in aortae. No differences in mouse locomotor activity were observed between the experimental groups. Mice on an HFD lacking T-type channels have reduced weight gain, lower total cholesterol levels, and increased dilatation of resistance vessels compared with WT mice on an HFD, suggesting that Cav3.1 deletion protects against endothelial dysfunction in resistance vessels but not in large conduit vessels.


Assuntos
Aorta Torácica/fisiopatologia , Canais de Cálcio Tipo T/deficiência , Artérias Mesentéricas/fisiopatologia , Obesidade/metabolismo , Obesidade/fisiopatologia , Animais , Cálcio/metabolismo , Canais de Cálcio Tipo T/genética , Colesterol/sangue , Dieta Hiperlipídica , Dilatação Patológica , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Óxido Nítrico/metabolismo , Resistência Vascular , Aumento de Peso
9.
Basic Clin Pharmacol Toxicol ; 127(2): 59-66, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31310708

RESUMO

Almost fifty years ago, experiments on isolated veins showed that acute hypoxia augments venoconstrictor responses in vitro and that such facilitation relied on anaerobic glycolysis. Over the years, this phenomenon was extended to a number of arterial preparations of different species and revisited, from a mechanistic point of view, with the successive demonstration that it depends on calcium handling in the vascular smooth muscle cells, is endothelium-dependent and requires the production of nitric oxide (NO) by endothelial nitric oxide synthase (eNOS) and the activation of soluble guanylyl cyclase (sGC). However, rather than the vasodilator cyclic nucleotide 3',5'-cyclic guanosine monophosphate (cGMP), its canonical product, the latter enzyme produces 3',5'-cyclic inosine monophosphate (cIMP) instead during acute hypoxia; this non-canonical cyclic nucleotide facilitates the contractile process in the vascular smooth muscle cells. This 'biased' activity of soluble guanylyl cyclase appears to involve stimulation of NAD(P)H:quinone oxidoreductase 1 (NQO-1). The exact interactions between hypoxia, anaerobic metabolism and NQO-1 leading to biased activity of soluble guanylyl cyclase remain to be established.


Assuntos
Endotélio Vascular/metabolismo , Hipóxia/metabolismo , Músculo Liso Vascular/metabolismo , Vasoconstrição/fisiologia , Animais , Cálcio/metabolismo , IMP Cíclico/metabolismo , Endotélio Vascular/fisiopatologia , Humanos , Hipóxia/fisiopatologia , Músculo Liso Vascular/fisiopatologia , NAD(P)H Desidrogenase (Quinona)/metabolismo , Óxido Nítrico/biossíntese , Guanilil Ciclase Solúvel/metabolismo , Vasoconstrição/efeitos dos fármacos , Vasodilatadores/farmacologia
10.
Thromb Haemost ; 120(1): 168-180, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31858519

RESUMO

Ischemia/reperfusion (I/R) injury in acute myocardial infarction activates several deleterious molecular mechanisms. The transcription factor JunD regulates pathways involved in oxidative stress as well as in cellular proliferation, differentiation, and death. The present study investigated the potential role of JunD as a modulator of myocardial injury pathways in a mouse model of cardiac I/R injury. Infarct size, systemic and local inflammation, and production of reactive oxygen species, as well as cytosolic and mitochondrial apoptotic pathways were investigated in adult males after myocardial I/R. In wild-type (WT) mice, 30 minutes after ischemia and up to 24 hours following reperfusion, cardiac JunD messenger ribonucleic acid expression was reduced while JunB increased. Cardiac-specific JunD overexpressing mice (JunDTg/0 ) displayed larger infarcts compared with WT. However, postischemic inflammatory or oxidative responses did not differ. JunD overexpression reduced Sirt3 transcription by binding to its promoter, thus leading to mitochondrial dysfunction, myocardial cell death, and increased infarct size. On the other hand, JunD silencing reduced, while Sirt3 silencing increased infarct size. In human myocardial autopsy specimens, JunD-positive areas within the infarcted left ventricle staining corresponded to undetectable Sirt3 areas in consecutive sections of the same heart. Cardiac-specific JunD overexpression increases myocardial infarct size following I/R. These effects are mediated via Sirt3 transcriptional repression, mitochondrial swelling, and increased apoptosis, suggesting that JunD is a key regulator of myocardial I/R injury. The present data set the stage for further investigation of the potential role of Sirt3 activation as a novel target for the treatment of acute myocardial infarction.


Assuntos
Mitocôndrias/metabolismo , Infarto do Miocárdio/metabolismo , Miocárdio/metabolismo , Miócitos Cardíacos/fisiologia , Proteínas Proto-Oncogênicas c-jun/metabolismo , Traumatismo por Reperfusão/metabolismo , Sirtuína 3/metabolismo , Animais , Apoptose , Modelos Animais de Doenças , Regulação para Baixo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infarto do Miocárdio/patologia , Miocárdio/patologia , Especificidade de Órgãos , Proteínas Proto-Oncogênicas c-jun/genética , Traumatismo por Reperfusão/patologia , Sirtuína 3/genética , Regulação para Cima
11.
Basic Clin Pharmacol Toxicol ; 127(2): 81-91, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31671245

RESUMO

Adenosine monophosphate-activated protein kinase (AMPK), expressed/present ubiquitously in the body, contributes to metabolic regulation. In the vasculature, activation of AMPK is associated with several beneficial biological effects including enhancement of vasodilatation, reduction of oxidative stress and inhibition of inflammatory reactions. The vascular protective effects of certain anti-diabetic (metformin and sitagliptin) or lipid-lowering (simvastatin and fenofibrate) therapeutic agents, of active components of Chinese medicinal herbs (resveratrol and berberine) and of pharmacological agents (AICAR, A769662 and PT1) have been attributed to the activation of AMPK (in endothelial cells, vascular smooth muscle cells and/or perivascular adipocytes), independently of changes in the metabolic profile (eg glucose tolerance and/or plasma lipoprotein levels), leading to improved endothelium-derived nitric oxide-mediated vasodilatation and attenuated endothelium-derived cyclooxygenase-dependent vasoconstriction. By contrast, endothelial AMPK activation with pharmacological agents or by genetic modification is associated with reduced endothelium-dependent relaxations in small blood vessels and elevated systolic blood pressure. Indeed, AMPK activators inhibit endothelium-dependent hyperpolarization (EDH)-type relaxations in superior mesenteric arteries, partly by inhibiting endothelial calcium-activated potassium channel signalling. Therefore, AMPK activation is not necessarily beneficial in terms of endothelial function. The contribution of endothelial AMPK in the regulation of vascular tone, in particular in the microvasculature where EDH plays a more important role, remains to be characterized.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Endotélio Vascular/enzimologia , Músculo Liso Vascular/enzimologia , Óxido Nítrico/metabolismo , Vasoconstrição/fisiologia , Vasodilatação/fisiologia , Proteínas Quinases Ativadas por AMP/genética , Animais , Diabetes Mellitus/enzimologia , Diabetes Mellitus/fisiopatologia , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/fisiopatologia , Humanos , Hipoglicemiantes/farmacologia , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/fisiopatologia , Canais de Potássio/metabolismo , Transdução de Sinais , Vasoconstrição/efeitos dos fármacos , Vasodilatação/efeitos dos fármacos
12.
Trends Pharmacol Sci ; 40(12): 956-970, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31704174

RESUMO

Mechanotransduction has a key role in vascular development, physiology, and disease states. Piezo1 is a mechanosensitive (MS) nonselective cationic channel that occurs in endothelial and vascular smooth muscle cells. It is activated by shear stress associated with increases in local blood flow, as well as by cell membrane stretch upon elevation of blood pressure. Here, we briefly review the pharmacological modulators of Piezo and discuss current understanding of the role of Piezo1 in vascular mechanobiology and associated clinical disorders, such as atherosclerosis and hypertension. Ultimately, we believe that this research will help identify novel therapeutic strategies for the treatment of vascular diseases.


Assuntos
Sistema Cardiovascular/metabolismo , Canais Iônicos/metabolismo , Animais , Fenômenos Fisiológicos Cardiovasculares , Sistema Cardiovascular/crescimento & desenvolvimento , Humanos , Canais Iônicos/química , Mecanotransdução Celular , Modelos Moleculares , Morfogênese
13.
J Vis Exp ; (148)2019 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-31205306

RESUMO

Altered vascular tone responsiveness to pathophysiological stimuli contributes to the development of a wide range of cardiovascular and metabolic diseases. Endothelial dysfunction represents a major culprit for the reduced vasodilatation and enhanced vasoconstriction of arteries. Adipose (fat) tissues surrounding the arteries play important roles in the regulation of endothelium-dependent relaxation and/or contraction of the vascular smooth muscle cells. The cross-talks between the endothelium and perivascular adipose tissues can be assessed ex vivo using mounted blood vessels by a wire myography system. However, optimal settings should be established for arteries derived from animals of different species, ages, genetic backgrounds and/or pathophysiological conditions.


Assuntos
Tecido Adiposo/fisiologia , Endotélio Vascular/fisiologia , Artérias Mesentéricas/fisiologia , Músculo Liso Vascular/fisiologia , Vasoconstrição/fisiologia , Vasodilatação/fisiologia , Tecido Adiposo/citologia , Tecido Adiposo/efeitos dos fármacos , Animais , Cardiotônicos/farmacologia , Endotélio Vascular/citologia , Endotélio Vascular/efeitos dos fármacos , Masculino , Artérias Mesentéricas/citologia , Artérias Mesentéricas/efeitos dos fármacos , Camundongos , Músculo Liso Vascular/citologia , Músculo Liso Vascular/efeitos dos fármacos , Miografia , Fenilefrina/farmacologia , Sirtuína 1/metabolismo , Vasoconstrição/efeitos dos fármacos , Vasodilatação/efeitos dos fármacos
14.
Br J Pharmacol ; 176(16): 2905-2921, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31116877

RESUMO

BACKGROUND AND PURPOSE: Endothelium-dependent hyperpolarizations (EDHs) contribute to the regulation of peripheral resistance. They are initiated through opening of endothelial calcium-activated potassium channels (KCa ); the potassium ions released then diffuse to the underlying smooth muscle cells, causing hyperpolarization and thus relaxation. The present study aimed to examine whether or not AMPK modulates EDH-like relaxations in rat mesenteric arteries. EXPERIMENTAL APPROACH: Arterial rings were isolated for isometric tension recording. AMPK activity and protein level were measured by ELISA and western blotting respectively. KEY RESULTS: The AMPK activator, AICAR, reduced ACh-induced EDH-like relaxations and increased AMPK activity in preparations with endothelium; these responses were prevented by compound C, an AMPK inhibitor. AICAR inhibited relaxations induced by SKA-31 (opener of endothelial KCa ) but did not affect potassium-induced, hyperpolarization-attributable relaxations or increase AMPK activity in preparations without endothelium. A769662, another AMPK activator, not only caused a similar inhibition of relaxations to ACh and SKA-31 in preparations with endothelium but also inhibited hyperpolarization-attributable relaxations and augmented AMPK activity in rings without endothelium. Protein levels of total AMPKα, AMPKα1, or AMPKß1/2 were comparable between preparations with and without endothelium. CONCLUSIONS AND IMPLICATIONS: Activation of endothelial AMPK, by either AICAR or A769662, acutely inhibits EDH-like relaxations of rat mesenteric arteries. Furthermore, A769662 inhibits signalling downstream of smooth muscle hyperpolarization. In view of the major blunting effect of AMPK activation on EDH-like relaxations, caution should be applied when administering therapeutic agents that activate AMPK in patients with endothelial dysfunction characterized by reduced production and/or bioavailability of NO.


Assuntos
Proteínas Quinases Ativadas por AMP/fisiologia , Endotélio Vascular/fisiologia , Artérias Mesentéricas/fisiologia , Acetilcolina/farmacologia , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacologia , Animais , Compostos de Bifenilo , Bradicinina/farmacologia , Vasos Coronários/efeitos dos fármacos , Vasos Coronários/fisiologia , Endotélio Vascular/efeitos dos fármacos , Técnicas In Vitro , Masculino , Artérias Mesentéricas/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Pironas/farmacologia , Ratos Sprague-Dawley , Ribonucleotídeos/farmacologia , Suínos , Tiofenos/farmacologia , Vasodilatação/efeitos dos fármacos
16.
Acta Physiol (Oxf) ; 225(1): e13189, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30240139

RESUMO

AIMS: The epithelial sodium channel (ENaC) is expressed in cultured endothelial cells and inhibitory coupling to eNOS activity has been proposed. The present study tested the hypothesis that ENaC blockers increase systemic NO-products and lower blood pressure in patients and mice, depending on eNOS. METHODS: NO-products and cGMP were measured in diabetes patient urine and plasma samples before and after amiloride treatment (20-40 mg for two days, plasma n = 22, urine n = 12 and 5-10 mg for eight weeks, plasma n = 52, urine n = 55). Indwelling catheters were implanted in the femoral artery and vein in mice for continuous arterial blood pressure and heart rate recordings and infusion. RESULTS: Treatment with amiloride for two days increased plasma and urine NO-products, while plasma cGMP decreased and urinary cGMP was unchanged in patient samples. Eight weeks of treatment with amiloride did not alter NO-products and cGMP. In mice, amiloride boli of 5, 50, and 500 µg/kg lowered heart rate and arterial blood pressure significantly and acutely. Benzamil had no effect on pressure and raised heart rate. In hypertensive eNOS-/- and L-NAME-treated mice, amiloride lowered blood pressure significantly. L-NAME infusion significantly decreased NO-products in plasma; amiloride and eNOS-deletion had no effect. An acetylcholine bolus resulted in acute blood pressure drop that was attenuated in eNOS-/- and L-NAME mice. ENaC subunit expressions were not detected consistently in human and mouse arteries and endothelial cells. CONCLUSION: Amiloride has an acute hypotensive action not dependent on ENaC and eNOS and likely related to the heart.


Assuntos
Amilorida/farmacologia , Células Endoteliais/efeitos dos fármacos , Canais Epiteliais de Sódio/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Bloqueadores do Canal Iônico Sensível a Ácido/farmacologia , Amilorida/análogos & derivados , Animais , Pressão Sanguínea/efeitos dos fármacos , Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Células Endoteliais/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Hipertensão/tratamento farmacológico , Camundongos , Camundongos Knockout , Óxido Nítrico Sintase Tipo III/genética
17.
Cardiovasc Res ; 115(3): 678-690, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30165439

RESUMO

AIMS: Aged arteries are characterized by attenuated vasodilator and enhanced vasoconstrictor responses, which contribute to the development of diseases such as arterial hypertension, atherosclerosis, and heart failure. SIRT1 is a longevity regulator exerting protective functions against vascular ageing, although the underlying mechanisms remain largely unknown. This study was designed to elucidate the signalling pathways involved in endothelial SIRT1-mediated vasodilator responses in the arteries of young and old mice. In particular, the contributions of nitric oxide (NO), endothelial NO synthase (eNOS), cyclooxygenase (COX), and/or soluble guanylyl cyclase (sGC) were examined. METHODS AND RESULTS: Wild type (WT) or eNOS knockout (eKO) mice were cross-bred with those overexpressing human SIRT1 selectively in the vascular endothelium (EC-SIRT1). Arteries were collected from the four groups of mice (WT, EC-SIRT1, eKO, and eKO-SIRT1) to measure isometric relaxations/contractions in response to various pharmacological agents. Reduction of NO bioavailability, hyper-activation of COX signalling, and down-regulation of sGC collectively contributed to the decreased vasodilator and increased vasoconstrictor responses in arteries of old WT mice. Overexpression of endothelial SIRT1 did not block the reduction in NO bioavailability but attenuated the hyper-activation of COX-2, thus protecting mice from age-induced vasoconstrictor responses in arteries of EC-SIRT1 mice. Deficiency of eNOS did not affect endothelial SIRT1-mediated anti-contractile activities in arteries of eKO-SIRT1 mice. Mechanistic studies revealed that overexpression of endothelial SIRT1 enhanced Notch signalling to up-regulate sGCß1 in smooth muscle cells. Increased expression and activity of sGC prevented age-induced hyper-activation of COX-2 as well as the conversion of endothelium-dependent relaxations to contractions in arteries of EC-SIRT1 mice. CONCLUSION: Age-induced down-regulation of sGC and up-regulation of COX-2 in arteries are at least partly attributable to the loss-of-endothelial SIRT1 function. Enhancing the endothelial expression and function of SIRT1 prevents early vascular ageing and maintains vasodilator responses, thus representing promising drug targets for cardiovascular diseases.


Assuntos
Envelhecimento/metabolismo , Células Endoteliais/enzimologia , Músculo Liso Vascular/enzimologia , Miócitos de Músculo Liso/enzimologia , Comunicação Parácrina , Sirtuína 1/metabolismo , Guanilil Ciclase Solúvel/metabolismo , Vasodilatação , Fatores Etários , Envelhecimento/genética , Animais , Ciclo-Oxigenase 2/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Liso Vascular/efeitos dos fármacos , Mutação , Miócitos de Músculo Liso/efeitos dos fármacos , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/genética , Óxido Nítrico Sintase Tipo III/metabolismo , Transdução de Sinais , Sirtuína 1/genética , Regulação para Cima , Vasoconstrição , Vasoconstritores/farmacologia , Vasodilatação/efeitos dos fármacos , Vasodilatadores/farmacologia
18.
Am J Physiol Renal Physiol ; 315(6): F1670-F1682, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30280597

RESUMO

Mouse adipocytes have been reported to release aldosterone and reduce endothelium-dependent relaxation. It is unknown whether perivascular adipose tissue (PVAT) releases aldosterone in humans. The present experiments were designed to test the hypothesis that human PVAT releases aldosterone and induces endothelial dysfunction. Vascular reactivity was assessed in human internal mammary and renal segmental arteries obtained at surgery. The arteries were prepared with/without PVAT, and changes in isometric tension were measured in response to the vasoconstrictor thromboxane prostanoid receptor agonist U46619 and the endothelium-dependent vasodilator acetylcholine. The effects of exogenous aldosterone and of mineralocorticoid receptor (MR) antagonist eplerenone were determined. Aldosterone concentrations were measured by ELISA in conditioned media incubated with human adipose tissue with/without angiotensin II stimulation. Presence of aldosterone synthase and MR mRNA was examined in perirenal, abdominal, and mammary PVAT by PCR. U46619 -induced tension and acetylcholine-induced relaxation were unaffected by exogenous and endogenous aldosterone (addition of aldosterone and MR blocker) in mammary and renal segmental arteries, both in the presence and absence of PVAT. Aldosterone release from incubated perivascular fat was not detectable. Aldosterone synthase expression was not consistently observed in human adipose tissues in contrast to that of MR. Thus, exogenous aldosterone does not affect vascular reactivity and endothelial function in ex vivo human arterial segments, and the tested human adipose tissues have no capacity to synthesize/release aldosterone. In perspective, physiologically relevant effects of aldosterone on vascular function in humans are caused by systemic aldosterone originating from the adrenal gland.


Assuntos
Tecido Adiposo/metabolismo , Aldosterona/metabolismo , Artéria Torácica Interna/metabolismo , Comunicação Parácrina , Artéria Renal/metabolismo , Vasoconstrição , Idoso , Meios de Cultivo Condicionados/metabolismo , Feminino , Humanos , Masculino , Artéria Torácica Interna/cirurgia , Pessoa de Meia-Idade , Artéria Renal/cirurgia , Via Secretória , Transdução de Sinais , Técnicas de Cultura de Tecidos
19.
JCI Insight ; 3(17)2018 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-30185654

RESUMO

Lipocalin-2 is not only a sensitive biomarker, but it also contributes to the pathogenesis of renal injuries. The present study demonstrates that adipose tissue-derived lipocalin-2 plays a critical role in causing both chronic and acute renal injuries. Four-week treatment with aldosterone and high salt after uninephrectomy (ANS) significantly increased both circulating and urinary lipocalin-2, and it induced glomerular and tubular injuries in kidneys of WT mice. Despite increased renal expression of lcn2 and urinary excretion of lipocalin-2, mice with selective deletion of lcn2 alleles in adipose tissue (Adipo-LKO) are protected from ANS- or aldosterone-induced renal injuries. By contrast, selective deletion of lcn2 alleles in kidney did not prevent aldosterone- or ANS-induced renal injuries. Transplantation of fat pads from WT donors increased the sensitivity of mice with complete deletion of Lcn2 alleles (LKO) to aldosterone-induced renal injuries. Aldosterone promoted the urinary excretion of a human lipocalin-2 variant, R81E, in turn causing renal injuries in LKO mice. Chronic treatment with R81E triggered significant renal injuries in LKO, resembling those observed in WT mice following ANS challenge. Taken in conjunction, the present results demonstrate that lipocalin-2 derived from adipose tissue causes acute and chronic renal injuries, largely independent of local lcn2 expression in kidney.


Assuntos
Injúria Renal Aguda/metabolismo , Tecido Adiposo/metabolismo , Aldosterona/farmacologia , Lipocalina-2/metabolismo , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/patologia , Tecido Adiposo/patologia , Alelos , Animais , Biomarcadores , Modelos Animais de Doenças , Feminino , Fibrose , Humanos , Rim/patologia , Lipocalina-2/genética , Lipocalina-2/farmacologia , Lipocalina-2/urina , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Nefrectomia , Proteínas Recombinantes
20.
J Appl Physiol (1985) ; 125(5): 1384-1395, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30091668

RESUMO

Obstructive sleep apnea is characterized by intermittent hypoxia (IH) during sleep and predisposes to endothelial dysfunction. Obesity is a major risk factor for the occurrence of sleep apnea. The present study compared the functional impact of low- (IH10; 10 hypoxic events/h) and high-frequency (IH60; 60 hypoxic events/h) IH for 4 wk on endothelial function in male C57BL/6 mice with or without high-fat (HF) diet-induced obesity. Mean arterial blood pressure (tail cuff method) was increased in obese mice after IH60 exposure, i.e., HF + IH60 group. The serum levels of the oxidative stress marker malondialdehyde were augmented in lean IH60 and HF groups, with a further increase in HF + IH60 but a reduction in HF + IH10 mice compared with the HF group. Vascular responsiveness was assessed as changes in isometric tension in isolated arteries. Relaxations to the endothelium-dependent vasodilator acetylcholine were impaired in HF + IH60 aortae. Endothelium-dependent contractions (EDC; response to acetylcholine in the presence of the nitric oxide synthase inhibitor l-NAME) in carotid arteries were augmented in the HF group, but this HF-induced augmentation was suppressed by low-frequency IH exposure. The addition of apocynin (antioxidant) reduced EDC in HF and HF + IH60 groups but not in HF + IH10 group. In conclusion, these findings suggest that exposure of obese mice to mild IH exerts preconditioning-like suppression of endothelium-dependent and oxidative stress-mediated contractions. When IH severity increases, this suppression diminishes and endothelial dysfunction accelerates. NEW & NOTEWORTHY The present study demonstrates, for the first time, that low-frequency intermittent hypoxia may exert a preconditioning-like suppression of oxidative stress-induced endothelium-dependent contractions in mice with diet-induced obesity. This relative suppression was diminished as intermittent hypoxia became more severe, and a deleterious effect on endothelial function emerged.


Assuntos
Artérias Carótidas/fisiopatologia , Endotélio Vascular/fisiopatologia , Hipóxia/fisiopatologia , Obesidade/fisiopatologia , Vasoconstrição , Animais , Pressão Arterial , Masculino , Camundongos Endogâmicos C57BL , Estresse Oxidativo , Vasodilatação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...