Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Inf Model ; 64(7): 2637-2644, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38453912

RESUMO

Identifying and discovering druggable protein binding sites is an important early step in computer-aided drug discovery, but it remains a difficult task where most campaigns rely on a priori knowledge of binding sites from experiments. Here, we present a binding site prediction method called Graph Attention Site Prediction (GrASP) and re-evaluate assumptions in nearly every step in the site prediction workflow from data set preparation to model evaluation. GrASP is able to achieve state-of-the-art performance at recovering binding sites in PDB structures while maintaining a high degree of precision which will minimize wasted computation in downstream tasks such as docking and free energy perturbation.


Assuntos
Fármacos Anti-HIV , Sítios de Ligação , Descoberta de Drogas , Redes Neurais de Computação , Força da Mão
2.
J Chem Inf Model ; 64(7): 2789-2797, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-37981824

RESUMO

Kinases compose one of the largest fractions of the human proteome, and their misfunction is implicated in many diseases, in particular, cancers. The ubiquitousness and structural similarities of kinases make specific and effective drug design difficult. In particular, conformational variability due to the evolutionarily conserved Asp-Phe-Gly (DFG) motif adopting in and out conformations and the relative stabilities thereof are key in structure-based drug design for ATP competitive drugs. These relative conformational stabilities are extremely sensitive to small changes in sequence and provide an important problem for sampling method development. Since the invention of AlphaFold2, the world of structure-based drug design has noticeably changed. In spite of it being limited to crystal-like structure prediction, several methods have also leveraged its underlying architecture to improve dynamics and enhanced sampling of conformational ensembles, including AlphaFold2-RAVE. Here, we extend AlphaFold2-RAVE and apply it to a set of kinases: the wild type DDR1 sequence and three mutants with single point mutations that are known to behave drastically differently. We show that AlphaFold2-RAVE is able to efficiently recover the changes in relative stability using transferable learned order parameters and potentials, thereby supplementing AlphaFold2 as a tool for exploration of Boltzmann-weighted protein conformations (Meller, A.; Bhakat, S.; Solieva, S.; Bowman, G. R. Accelerating Cryptic Pocket Discovery Using AlphaFold. J. Chem. Theory Comput. 2023, 19, 4355-4363).


Assuntos
Oligopeptídeos , Inibidores de Proteínas Quinases , Humanos , Modelos Moleculares , Inibidores de Proteínas Quinases/química , Conformação Proteica , Oligopeptídeos/química
3.
ArXiv ; 2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37731662

RESUMO

Kinases compose one of the largest fractions of the human proteome, and their misfunction is implicated in many diseases, in particular cancers. The ubiquitousness and structural similarities of kinases makes specific and effective drug design difficult. In particular, conformational variability due to the evolutionarily conserved DFG motif adopting in and out conformations and the relative stabilities thereof are key in structure-based drug design for ATP competitive drugs. These relative conformational stabilities are extremely sensitive to small changes in sequence, and provide an important problem for sampling method development. Since the invention of AlphaFold2, the world of structure-based drug design has noticably changed. In spite of it being limited to crystal-like structure prediction, several methods have also leveraged its underlying architecture to improve dynamics and enhanced sampling of conformational ensembles, including AlphaFold2-RAVE. Here, we extend AlphaFold2-RAVE and apply it to a set of kinases: the wild type DDR1 sequence and three mutants with single point mutations that are known to behave drastically differently. We show that AlphaFold2-RAVE is able to efficiently recover the changes in relative stability using transferable learnt order parameters and potentials, thereby supplementing AlphaFold2 as a tool for exploration of Boltzmann-weighted protein conformations.

4.
bioRxiv ; 2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37546775

RESUMO

Identifying and discovering druggable protein binding sites is an important early step in computer-aided drug discovery but remains a difficult task where most campaigns rely on a priori knowledge of binding sites from experiments. Here we present a novel binding site prediction method called Graph Attention Site Prediction (GrASP) and re-evaluate assumptions in nearly every step in the site prediction workflow from dataset preparation to model evaluation. GrASP is able to achieve state-of-the-art performance at recovering binding sites in PDB structures while maintaining a high degree of precision which will minimize wasted computation in downstream tasks such as docking and free energy perturbation.

5.
J Chem Theory Comput ; 19(14): 4351-4354, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37171364

RESUMO

While AlphaFold2 is rapidly being adopted as a new standard in protein structure predictions, it is limited to single structures. This can be insufficient for the inherently dynamic world of biomolecules. In this Letter, we propose AlphaFold2-RAVE, an efficient protocol for obtaining Boltzmann-ranked ensembles from sequence. The method uses structural outputs from AlphaFold2 as initializations for artificial intelligence-augmented molecular dynamics. We release the method as an open-source code and demonstrate results on different proteins.

6.
J Chem Phys ; 157(3): 034106, 2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35868925

RESUMO

Transition path theory computes statistics from ensembles of reactive trajectories. A common strategy for sampling reactive trajectories is to control the branching and pruning of trajectories so as to enhance the sampling of low probability segments. However, it can be challenging to apply transition path theory to data from such methods because determining whether configurations and trajectory segments are part of reactive trajectories requires looking backward and forward in time. Here, we show how this issue can be overcome efficiently by introducing simple data structures. We illustrate the approach in the context of nonequilibrium umbrella sampling, but the strategy is general and can be used to obtain transition path theory statistics from other methods that sample segments of unbiased trajectories.

7.
J Chem Theory Comput ; 17(5): 2948-2963, 2021 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-33908762

RESUMO

Elucidating physical mechanisms with statistical confidence from molecular dynamics simulations can be challenging owing to the many degrees of freedom that contribute to collective motions. To address this issue, we recently introduced a dynamical Galerkin approximation (DGA) [Thiede, E. H. J. Chem. Phys., 150, 2019, 244111], in which chemical kinetic statistics that satisfy equations of dynamical operators are represented by a basis expansion. Here, we reformulate this approach, clarifying (and reducing) the dependence on the choice of lag time. We present a new projection of the reactive current onto collective variables and provide improved estimators for rates and committors. We also present simple procedures for constructing suitable smoothly varying basis functions from arbitrary molecular features. To evaluate estimators and basis sets numerically, we generate and carefully validate a data set of short trajectories for the unfolding and folding of the trp-cage miniprotein, a well-studied system. Our analysis demonstrates a comprehensive strategy for characterizing reaction pathways quantitatively.


Assuntos
Proteínas/química , Simulação de Dinâmica Molecular , Dobramento de Proteína
8.
J Phys Chem B ; 124(27): 5571-5587, 2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32515958

RESUMO

The protein hormone insulin exists in various oligomeric forms, and a key step in binding its cellular receptor is dissociation of the dimer. This dissociation process and its corresponding association process have come to serve as paradigms of coupled (un)folding and (un)binding more generally. Despite its fundamental and practical importance, the mechanism of insulin dimer dissociation remains poorly understood. Here, we use molecular dynamics simulations, leveraging recent developments in umbrella sampling, to characterize the energetic and structural features of dissociation in unprecedented detail. We find that the dissociation is inherently multipathway with limiting behaviors corresponding to conformational selection and induced fit, the two prototypical mechanisms of coupled folding and binding. Along one limiting path, the dissociation leads to detachment of the C-terminal segment of the insulin B chain from the protein core, a feature believed to be essential for receptor binding. We simulate IR spectroscopy experiments to aid in interpreting current experiments and identify sites where isotopic labeling can be most effective for distinguishing the contributions of the limiting mechanisms.


Assuntos
Insulina , Simulação de Dinâmica Molecular , Insulina/metabolismo , Conformação Molecular , Ligação Proteica , Dobramento de Proteína , Proteínas
9.
Proc Natl Acad Sci U S A ; 115(49): E11475-E11484, 2018 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-30442665

RESUMO

The cyanobacterial clock proteins KaiA, KaiB, and KaiC form a powerful system to study the biophysical basis of circadian rhythms, because an in vitro mixture of the three proteins is sufficient to generate a robust ∼24-h rhythm in the phosphorylation of KaiC. The nucleotide-bound states of KaiC critically affect both KaiB binding to the N-terminal domain (CI) and the phosphotransfer reactions that (de)phosphorylate the KaiC C-terminal domain (CII). However, the nucleotide exchange pathways associated with transitions among these states are poorly understood. In this study, we integrate recent advances in molecular dynamics methods to elucidate the structure and energetics of the pathway for Mg·ADP release from the CII domain. We find that nucleotide release is coupled to large-scale conformational changes in the KaiC hexamer. Solvating the nucleotide requires widening the subunit interface leading to the active site, which is linked to extension of the A-loop, a structure implicated in KaiA binding. These results provide a molecular hypothesis for how KaiA acts as a nucleotide exchange factor. In turn, structural parallels between the CI and CII domains suggest a mechanism for allosteric coupling between the domains. We relate our results to structures observed for other hexameric ATPases, which perform diverse functions.


Assuntos
Proteínas de Bactérias/metabolismo , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/metabolismo , Simulação de Dinâmica Molecular , Nucleotídeos/metabolismo , Proteínas de Bactérias/genética , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/genética , Genes Bacterianos , Modelos Moleculares , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...